{"title":"Autonomous indoor navigation of a stock quadcopter with off-board control","authors":"Adriano Garcia, K. Ghose","doi":"10.1109/RED-UAS.2017.8101656","DOIUrl":null,"url":null,"abstract":"We present an enhanced autonomous indoor navigation system for a stock quadcopter drone where all navigation commands are derived off-board on a base station. The base station processes the video stream transmitted from a forward-facing camera on the drone to determine the drone's physical disposition and trajectory in building hallways to derive steering commands that are sent to the drone. Off-board processing and the lack of on-board sensors for localizing the drone permits standard mid-range quadcopters to be used and conserves the limited power source on the quadcopter. We introduce improved and new techniques, compared to our prototype system [1], to maintain stable flights, estimate distance to hallway intersections and describe algorithms to stop the drone ahead of time and turn correctly at intersections.","PeriodicalId":299104,"journal":{"name":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2017.8101656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present an enhanced autonomous indoor navigation system for a stock quadcopter drone where all navigation commands are derived off-board on a base station. The base station processes the video stream transmitted from a forward-facing camera on the drone to determine the drone's physical disposition and trajectory in building hallways to derive steering commands that are sent to the drone. Off-board processing and the lack of on-board sensors for localizing the drone permits standard mid-range quadcopters to be used and conserves the limited power source on the quadcopter. We introduce improved and new techniques, compared to our prototype system [1], to maintain stable flights, estimate distance to hallway intersections and describe algorithms to stop the drone ahead of time and turn correctly at intersections.