Markov chains, computer proofs, and average-case analysis of best fit bin packing

E. Coffman, David S. Johnson, P. Shor, R. Weber
{"title":"Markov chains, computer proofs, and average-case analysis of best fit bin packing","authors":"E. Coffman, David S. Johnson, P. Shor, R. Weber","doi":"10.1145/167088.167203","DOIUrl":null,"url":null,"abstract":"Many complex Coffrnan, Jr. 1, D. S. Johnsonl, P. W. Shorl, R. R. Weber2 pmcessea can be modeled by (countably) infinite, multidmens~onst Markov chains. Unfortunately, cnrnmt theoretical techniques for analyzing infinite Markov chains are for the most part limited to three or fewer dimensions. In this paper we propose a computer-aided approach to the analysis of higher-dimensional domains, using several open problems about the average-case behavior of the Best Fit bin packing algorithm as case studies. We show how to use dynamic and liiear programming to construct potential functions thal when applied to suitably modified multi-step versions of our original Markov chain, yield drifts that are bounded away fmm O. This enables us to completely classify the expected behavior of Best Fit under discrete uniform distributions U{J, K) when K is small. (Under U{ J, K}, the allowed item sizes are i/K, 1 S i S J, with all J possibilities equally likely.) In addition, we can answer yes to the long-standing open question of whether there exist distributions of thii form for which Best Fit yields linearly-growing waste. The proof of the latter theorem relies on a 24-hour computation, and although its validity does not depend on the linear programmingpackage we used, it does tely on the correctness of our dynamic progr smming code and of our computer’s implementation of the IEEE floating point standard.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Many complex Coffrnan, Jr. 1, D. S. Johnsonl, P. W. Shorl, R. R. Weber2 pmcessea can be modeled by (countably) infinite, multidmens~onst Markov chains. Unfortunately, cnrnmt theoretical techniques for analyzing infinite Markov chains are for the most part limited to three or fewer dimensions. In this paper we propose a computer-aided approach to the analysis of higher-dimensional domains, using several open problems about the average-case behavior of the Best Fit bin packing algorithm as case studies. We show how to use dynamic and liiear programming to construct potential functions thal when applied to suitably modified multi-step versions of our original Markov chain, yield drifts that are bounded away fmm O. This enables us to completely classify the expected behavior of Best Fit under discrete uniform distributions U{J, K) when K is small. (Under U{ J, K}, the allowed item sizes are i/K, 1 S i S J, with all J possibilities equally likely.) In addition, we can answer yes to the long-standing open question of whether there exist distributions of thii form for which Best Fit yields linearly-growing waste. The proof of the latter theorem relies on a 24-hour computation, and although its validity does not depend on the linear programmingpackage we used, it does tely on the correctness of our dynamic progr smming code and of our computer’s implementation of the IEEE floating point standard.
马尔可夫链,计算机证明,和平均情况下最适合的装箱分析
许多复杂的Coffrnan, Jr. 1, D. S. Johnsonl, P. W. Shorl, R. R. Weber2问题可以用(可数)无限的、多重的马尔可夫链来建模。不幸的是,用于分析无限马尔可夫链的现有理论技术在很大程度上仅限于三维或更少的维度。在本文中,我们提出了一种计算机辅助方法来分析高维域,使用关于最佳拟合装箱算法的平均情况行为的几个开放问题作为案例研究。我们展示了如何使用动态和线性规划来构造势能函数,当应用于适当修改的原始马尔可夫链的多步版本时,产生有界漂移fmm O.这使我们能够在K很小时完全分类离散均匀分布U{J, K)下的最佳拟合期望行为。(在U{J, K}下,允许的物品大小为i/K, 1 S i S J,所有J种可能性的概率相等。)此外,我们可以回答长期存在的开放性问题,即是否存在thii形式的分布,其最佳拟合产生线性生长的废物。后一个定理的证明依赖于24小时的计算,尽管它的有效性不依赖于我们使用的线性编程包,但它完全依赖于我们的动态编程代码的正确性和我们的计算机对IEEE浮点标准的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信