{"title":"State-Dependent Riccati Equation Control for Motion Planning of SpaceManipulator Carrying a Heavy Payload","authors":"Q. Jia, Yong Liu, Gang Chen, Hanxu Sun","doi":"10.2174/1874155X01509010992","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear optimal control approach is proposed to plan the motion of a redundant free-floating space manipulator (FFSM) when carrying a heavy payload. Optimal joint trajectories are determined to track a desired end-effector path, for which limitations of the manipulator's load-carrying capacity and tracking accuracy are simultaneously considered. In this method, FFSM is described as a nonlinear system using the dynamics equation. The integrated performance indicator is proposed as the cost function, which includes tracking error punishment of the end- effector, joint-torques optimization, total energy improvement and instability avoidance of the base. Then the state- dependent Riccati equation (SDRE) is established and solved by Taylor series approximation method. The motion planning algorithm is presented, subject to multi-constraints. Simulations are performed for a 7-DOF space manipulator and the results are discussed to illustrate the effectiveness of the proposed approach.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509010992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, a nonlinear optimal control approach is proposed to plan the motion of a redundant free-floating space manipulator (FFSM) when carrying a heavy payload. Optimal joint trajectories are determined to track a desired end-effector path, for which limitations of the manipulator's load-carrying capacity and tracking accuracy are simultaneously considered. In this method, FFSM is described as a nonlinear system using the dynamics equation. The integrated performance indicator is proposed as the cost function, which includes tracking error punishment of the end- effector, joint-torques optimization, total energy improvement and instability avoidance of the base. Then the state- dependent Riccati equation (SDRE) is established and solved by Taylor series approximation method. The motion planning algorithm is presented, subject to multi-constraints. Simulations are performed for a 7-DOF space manipulator and the results are discussed to illustrate the effectiveness of the proposed approach.