Reconstruction of linearly parameterized models using the vanishing points from a single image

Yong-In Yoon, J. Im, Dae-Hyun Kim, Jongsoo Choi
{"title":"Reconstruction of linearly parameterized models using the vanishing points from a single image","authors":"Yong-In Yoon, J. Im, Dae-Hyun Kim, Jongsoo Choi","doi":"10.1109/ICME.2003.1220899","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method using only three vanishing points to recover the dimensions of object and its pose from a single image with a camera of unknown focal length. Our approach is to compute the dimensions of objects represented by the unit vector of objects from an image. The dimension vector v can be solved by the standard nonlinear optimization techniques with a multistart method which generates multiple starting points for the optimizer by sampling the parameter space uniformly. This method allows model-based vision to be computed for the dimensions of object for a 3D model from matches to a single 2D image. Experimental results show the actual dimensions of object from an image agree well with the calculated results.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1220899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new method using only three vanishing points to recover the dimensions of object and its pose from a single image with a camera of unknown focal length. Our approach is to compute the dimensions of objects represented by the unit vector of objects from an image. The dimension vector v can be solved by the standard nonlinear optimization techniques with a multistart method which generates multiple starting points for the optimizer by sampling the parameter space uniformly. This method allows model-based vision to be computed for the dimensions of object for a 3D model from matches to a single 2D image. Experimental results show the actual dimensions of object from an image agree well with the calculated results.
利用单幅图像的消失点重建线性参数化模型
在本文中,我们提出了一种仅使用三个消失点从未知焦距相机的单幅图像中恢复物体尺寸及其姿态的新方法。我们的方法是计算由图像中物体的单位向量表示的物体的尺寸。维向量v可以用标准的非线性优化方法求解,该方法通过对参数空间均匀采样,为优化器生成多个起始点。该方法允许基于模型的视觉从匹配到单个2D图像计算3D模型对象的尺寸。实验结果表明,图像中物体的实际尺寸与计算结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信