Colour photometric stereo: simultaneous reconstruction of local gradient and colour of rough textured surfaces

S. Barsky, M. Petrou
{"title":"Colour photometric stereo: simultaneous reconstruction of local gradient and colour of rough textured surfaces","authors":"S. Barsky, M. Petrou","doi":"10.1109/ICCV.2001.937681","DOIUrl":null,"url":null,"abstract":"Classification of a rough 3D surface from 2D images may be difficult due to directional effects introduced by illumination. One possible way of dealing with the problem is to extract the local albedo and gradient surface information which do not depend on the illumination, and classify the texture directly using these intrinsic characteristics. In this paper we present an algorithm for simultaneous recovery of local gradient and colour using multiple photometric images. The algorithm is proven to be optimal in the least squares error sense. Experimental results with real images and comparison with other approaches are also presented.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Classification of a rough 3D surface from 2D images may be difficult due to directional effects introduced by illumination. One possible way of dealing with the problem is to extract the local albedo and gradient surface information which do not depend on the illumination, and classify the texture directly using these intrinsic characteristics. In this paper we present an algorithm for simultaneous recovery of local gradient and colour using multiple photometric images. The algorithm is proven to be optimal in the least squares error sense. Experimental results with real images and comparison with other approaches are also presented.
色度立体:同时重建粗糙纹理表面的局部梯度和颜色
由于光照引入的方向效应,从2D图像中分类粗糙的3D表面可能很困难。一种可能的解决方法是提取不依赖于光照的局部反照率和梯度表面信息,并直接利用这些固有特征对纹理进行分类。在本文中,我们提出了一种算法,同时恢复局部梯度和颜色使用多光度图像。证明了该算法在最小二乘误差意义上是最优的。给出了真实图像的实验结果,并与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信