Feature Extraction of ECG Signal by using Deep Feature

A. Diker, E. Avci
{"title":"Feature Extraction of ECG Signal by using Deep Feature","authors":"A. Diker, E. Avci","doi":"10.1109/ISDFS.2019.8757522","DOIUrl":null,"url":null,"abstract":"The analysis and classification of Electrocardiogram (ECG) signals have become very important tool to diagnose of heart disorders. Computer-aided techniques are generally used to classify biomedical application areas. In this paper, we aim to feature extraction and classification of ECG signals. Accordingly, an open access ECG database in Physionet was employed in order to separate normal and abnormal of ECG records. Deep feature approach which is based on Convolutional Neural Network (CNN) was applied to taking out important features of heart recordings. Afterward, Extreme Learning Machine (ELM) was applied to the ECG records. The average precision value metric was used to the performance of the classification performed. In this content, it was noticed classification success values were achieved to accuracy % 88.33, sensitivity %89.47 and specificity % 87.80 with ELM.","PeriodicalId":247412,"journal":{"name":"2019 7th International Symposium on Digital Forensics and Security (ISDFS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS.2019.8757522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The analysis and classification of Electrocardiogram (ECG) signals have become very important tool to diagnose of heart disorders. Computer-aided techniques are generally used to classify biomedical application areas. In this paper, we aim to feature extraction and classification of ECG signals. Accordingly, an open access ECG database in Physionet was employed in order to separate normal and abnormal of ECG records. Deep feature approach which is based on Convolutional Neural Network (CNN) was applied to taking out important features of heart recordings. Afterward, Extreme Learning Machine (ELM) was applied to the ECG records. The average precision value metric was used to the performance of the classification performed. In this content, it was noticed classification success values were achieved to accuracy % 88.33, sensitivity %89.47 and specificity % 87.80 with ELM.
基于深度特征的心电信号特征提取
心电图信号的分析与分类已成为诊断心脏疾病的重要手段。计算机辅助技术通常用于生物医学应用领域的分类。本文旨在对心电信号进行特征提取和分类。为此,采用Physionet中的开放存取心电数据库对心电记录进行正常与异常的分离。采用基于卷积神经网络(CNN)的深度特征提取方法提取心脏录音的重要特征。然后应用极限学习机(ELM)对心电记录进行分析。使用平均精度值度量来衡量所执行分类的性能。其中,ELM的分类成功率为准确率% 88.33,灵敏度%89.47,特异度% 87.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信