Sensing Matrix Sensitivity to Random Gaussian Perturbations in Compressed Sensing

A. Lavrenko, F. Roemer, G. D. Galdo, R. Thomä
{"title":"Sensing Matrix Sensitivity to Random Gaussian Perturbations in Compressed Sensing","authors":"A. Lavrenko, F. Roemer, G. D. Galdo, R. Thomä","doi":"10.23919/EUSIPCO.2018.8553575","DOIUrl":null,"url":null,"abstract":"In compressed sensing, the choice of the sensing matrix plays a crucial role: it defines the required hardware effort and determines the achievable recovery performance. Recent studies indicate that by optimizing a sensing matrix, one can potentially improve system performance compared to random ensembles. In this work, we analyze the sensitivity of a sensing matrix design to random perturbations, e.g., caused by hardware imperfections, with respect to the total (average) matrix coherence. We derive an exact expression for the average deterioration of the total coherence in the presence of Gaussian perturbations as a function of the perturbations' variance and the sensing matrix itself. We then numerically evaluate the impact it has on the recovery performance.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In compressed sensing, the choice of the sensing matrix plays a crucial role: it defines the required hardware effort and determines the achievable recovery performance. Recent studies indicate that by optimizing a sensing matrix, one can potentially improve system performance compared to random ensembles. In this work, we analyze the sensitivity of a sensing matrix design to random perturbations, e.g., caused by hardware imperfections, with respect to the total (average) matrix coherence. We derive an exact expression for the average deterioration of the total coherence in the presence of Gaussian perturbations as a function of the perturbations' variance and the sensing matrix itself. We then numerically evaluate the impact it has on the recovery performance.
压缩感知中感知矩阵对随机高斯扰动的敏感性
在压缩感知中,感知矩阵的选择起着至关重要的作用:它定义了所需的硬件努力并决定了可实现的恢复性能。最近的研究表明,通过优化传感矩阵,与随机集成相比,可以潜在地提高系统性能。在这项工作中,我们分析了传感矩阵设计对随机扰动的敏感性,例如,由硬件缺陷引起的随机扰动,相对于总(平均)矩阵相干性。我们导出了在高斯扰动存在下总相干性平均劣化的精确表达式,作为扰动方差和传感矩阵本身的函数。然后,我们对其对恢复性能的影响进行了数值评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信