Safe trajectory optimization for whole-body motion of humanoids

Valerio Modugno, Gabriele Nava, D. Pucci, F. Nori, G. Oriolo, S. Ivaldi
{"title":"Safe trajectory optimization for whole-body motion of humanoids","authors":"Valerio Modugno, Gabriele Nava, D. Pucci, F. Nori, G. Oriolo, S. Ivaldi","doi":"10.1109/HUMANOIDS.2017.8246958","DOIUrl":null,"url":null,"abstract":"Multi-task prioritized controllers generate complex behaviors for humanoids that concurrently satisfy several tasks and constraints. In our previous work we automatically learned the task priorities that maximized the robot performance in whole-body reaching tasks, ensuring that the optimized priorities were leading to safe behaviors. Here, we take the opposite approach: we optimize the task trajectories for whole-body balancing tasks with switching contacts, ensuring that the optimized movements are safe and never violate any of the robot and problem constraints. We use (1+1)-CMA-ES with Constrained Covariance Adaptation as a constrained black box stochastic optimization algorithm, with an instance of (1+1)-CMA-ES for bootstrapping the search. We apply our learning framework to the prioritized whole-body torque controller of iCub, to optimize the robot's movement for standing up from a chair.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multi-task prioritized controllers generate complex behaviors for humanoids that concurrently satisfy several tasks and constraints. In our previous work we automatically learned the task priorities that maximized the robot performance in whole-body reaching tasks, ensuring that the optimized priorities were leading to safe behaviors. Here, we take the opposite approach: we optimize the task trajectories for whole-body balancing tasks with switching contacts, ensuring that the optimized movements are safe and never violate any of the robot and problem constraints. We use (1+1)-CMA-ES with Constrained Covariance Adaptation as a constrained black box stochastic optimization algorithm, with an instance of (1+1)-CMA-ES for bootstrapping the search. We apply our learning framework to the prioritized whole-body torque controller of iCub, to optimize the robot's movement for standing up from a chair.
类人机器人全身运动安全轨迹优化
多任务优先控制器为同时满足多个任务和约束的类人机器人生成复杂的行为。在我们之前的工作中,我们自动学习了在全身到达任务中最大化机器人性能的任务优先级,确保优化的优先级导致安全行为。在这里,我们采取了相反的方法:我们优化了具有切换触点的全身平衡任务的任务轨迹,确保优化的运动是安全的,并且不会违反任何机器人和问题约束。我们使用带约束协方差适应的(1+1)-CMA-ES作为约束黑盒随机优化算法,并使用(1+1)-CMA-ES实例进行自引导搜索。我们将我们的学习框架应用于iCub的优先全身扭矩控制器,以优化机器人从椅子上站起来的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信