Comparative Analysis of Activation Functions Used in the Hidden Layers of Deep Neural Networks

Martin Kaloev, Georgi Krastev
{"title":"Comparative Analysis of Activation Functions Used in the Hidden Layers of Deep Neural Networks","authors":"Martin Kaloev, Georgi Krastev","doi":"10.1109/HORA52670.2021.9461312","DOIUrl":null,"url":null,"abstract":"The development in the field of neural networks opens up opportunities for the use of many activation functions, each of which has its own specific features. This raises questions about how compatible the different activation functions are and whether their exchange affects the operation of a neural network. The article reviews the design, training and research of a Deep Neural Network. The Network is applied for curve recognition Three popular activation functions are analysed in the hidden layers – sigmoid function (Sigmoid), a hyperbolic tangent (tanh) and a rectified linear unit (ReLU). The results of this study will be useful in the design of Deep Neural Networks and in the selection of activation functions.","PeriodicalId":270469,"journal":{"name":"2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA52670.2021.9461312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The development in the field of neural networks opens up opportunities for the use of many activation functions, each of which has its own specific features. This raises questions about how compatible the different activation functions are and whether their exchange affects the operation of a neural network. The article reviews the design, training and research of a Deep Neural Network. The Network is applied for curve recognition Three popular activation functions are analysed in the hidden layers – sigmoid function (Sigmoid), a hyperbolic tangent (tanh) and a rectified linear unit (ReLU). The results of this study will be useful in the design of Deep Neural Networks and in the selection of activation functions.
深层神经网络隐层激活函数的比较分析
神经网络领域的发展为许多激活函数的使用提供了机会,每个激活函数都有自己的特定特征。这就提出了不同激活函数的兼容性以及它们的交换是否会影响神经网络的操作的问题。本文综述了深度神经网络的设计、训练和研究。在隐层中分析了三种常用的激活函数——sigmoid函数(sigmoid)、双曲正切函数(tanh)和整流线性单元(ReLU)。研究结果对深度神经网络的设计和激活函数的选择具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信