Detection Coronavirus using Cased-Based Reasoning with Extended Jaccard Coefficient

Murien Nugraheni
{"title":"Detection Coronavirus using Cased-Based Reasoning with Extended Jaccard Coefficient","authors":"Murien Nugraheni","doi":"10.30645/ijistech.v5i1.112","DOIUrl":null,"url":null,"abstract":"Coronavirus Disease 2019 or known as COVID-19 is a new disease that can cause respiratory problems and pneumonia. This disease is caused by infection with Severe Acute Respiratory Syndrome Me Coronavirus 2 (SARS-CoV-2). Some of the clinical symptoms that appear vary, ranging from symptoms such as influenza, cough, cold, throat pain, muscle aches, headaches to those with serious complications such as pneumonia or sepsis. This research to build case-based reasoning for early detection of COVID-19 by looking at the characteristics of clinical symptoms seen in a person using the Extended Jaccard Coefficient method. The results show case-based reasoning for early detection of COVID-19 using the Extended Jaccard Coefficient method can model the level of similarity of a new case to an old case.","PeriodicalId":417247,"journal":{"name":"IJISTECH (International Journal of Information System & Technology)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJISTECH (International Journal of Information System & Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30645/ijistech.v5i1.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronavirus Disease 2019 or known as COVID-19 is a new disease that can cause respiratory problems and pneumonia. This disease is caused by infection with Severe Acute Respiratory Syndrome Me Coronavirus 2 (SARS-CoV-2). Some of the clinical symptoms that appear vary, ranging from symptoms such as influenza, cough, cold, throat pain, muscle aches, headaches to those with serious complications such as pneumonia or sepsis. This research to build case-based reasoning for early detection of COVID-19 by looking at the characteristics of clinical symptoms seen in a person using the Extended Jaccard Coefficient method. The results show case-based reasoning for early detection of COVID-19 using the Extended Jaccard Coefficient method can model the level of similarity of a new case to an old case.
基于扩展Jaccard系数的案例推理检测冠状病毒
2019冠状病毒病或称为COVID-19是一种可引起呼吸系统问题和肺炎的新疾病。该病是由感染严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)引起的。出现的一些临床症状各不相同,从流感、咳嗽、感冒、喉咙痛、肌肉痛、头痛等症状到肺炎或败血症等严重并发症。本研究通过使用扩展雅卡德系数法观察人的临床症状特征,建立基于病例的推理,以早期发现COVID-19。结果表明,基于病例的推理方法在COVID-19早期发现中使用扩展Jaccard系数方法可以模拟新病例与旧病例的相似程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信