Transfer Learning for Punctuation Prediction

Karan Makhija, Thi-Nga Ho, Chng Eng Siong
{"title":"Transfer Learning for Punctuation Prediction","authors":"Karan Makhija, Thi-Nga Ho, Chng Eng Siong","doi":"10.1109/APSIPAASC47483.2019.9023200","DOIUrl":null,"url":null,"abstract":"The output from most of the Automatic Speech Recognition system is a continuous sequence of words without proper punctuation. This decreases human readability and the performance of downstream natural language processing tasks on ASR text. We treat the punctuation prediction task as a sequence tagging task and propose an architecture that uses pre-trained BERT embeddings. Our model significantly improves the state of art on the IWSLT dataset. We achieve an overall F1 of 81.4% on the joint prediction of period, comma and question mark.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The output from most of the Automatic Speech Recognition system is a continuous sequence of words without proper punctuation. This decreases human readability and the performance of downstream natural language processing tasks on ASR text. We treat the punctuation prediction task as a sequence tagging task and propose an architecture that uses pre-trained BERT embeddings. Our model significantly improves the state of art on the IWSLT dataset. We achieve an overall F1 of 81.4% on the joint prediction of period, comma and question mark.
标点符号预测的迁移学习
大多数自动语音识别系统的输出是没有适当标点符号的连续单词序列。这降低了人类对ASR文本的可读性和下游自然语言处理任务的性能。我们将标点符号预测任务视为序列标记任务,并提出了一种使用预训练BERT嵌入的架构。我们的模型显著提高了IWSLT数据集的技术水平。我们在句号、逗号和问号的联合预测上实现了81.4%的整体F1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信