Multiscale analysis to facilitate joint chaos and fractal analysis of biosignals

Jianbo Gao, E. B. Lasch, Qian Chen
{"title":"Multiscale analysis to facilitate joint chaos and fractal analysis of biosignals","authors":"Jianbo Gao, E. B. Lasch, Qian Chen","doi":"10.1109/NAECON.2012.6531036","DOIUrl":null,"url":null,"abstract":"Biological systems provide definite examples of multiscale systems, which generate nonlinear, non-stationary, and highly complex signals. Developing effective methods for biosignal analysis has become increasingly important, owing to rapid progress in biosensing and astronomical accumulation of biological data. Albeit chaos and random fractal theories are among the most popular and most promising methods for biosignal analysis, they often may not be directly applicable, since chaos analysis requires that signals be relatively noise-free and stationary, and fractal analysis demands signals to be non-rhythmic and scale-free, which are rarely true in biology. We propose two multiscale approaches for biosignal analysis, adaptive fractal analysis and scale-dependent Lyapunov exponent (SDLE) analysis, and show that together they can tremendously facilitate joint chaos and multiscale analysis of biosignals.","PeriodicalId":352567,"journal":{"name":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"538 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2012.6531036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Biological systems provide definite examples of multiscale systems, which generate nonlinear, non-stationary, and highly complex signals. Developing effective methods for biosignal analysis has become increasingly important, owing to rapid progress in biosensing and astronomical accumulation of biological data. Albeit chaos and random fractal theories are among the most popular and most promising methods for biosignal analysis, they often may not be directly applicable, since chaos analysis requires that signals be relatively noise-free and stationary, and fractal analysis demands signals to be non-rhythmic and scale-free, which are rarely true in biology. We propose two multiscale approaches for biosignal analysis, adaptive fractal analysis and scale-dependent Lyapunov exponent (SDLE) analysis, and show that together they can tremendously facilitate joint chaos and multiscale analysis of biosignals.
多尺度分析促进生物信号的混沌和分形联合分析
生物系统提供了多尺度系统的明确例子,这些系统产生非线性、非平稳和高度复杂的信号。由于生物传感技术的快速发展和生物数据的天文数字积累,开发有效的生物信号分析方法变得越来越重要。尽管混沌和随机分形理论是生物信号分析中最流行和最有前途的方法之一,但它们通常可能并不直接适用,因为混沌分析要求信号相对无噪声和平稳,而分形分析要求信号是非节奏和无标度的,这在生物学中很少是正确的。本文提出了生物信号的两种多尺度分析方法——自适应分形分析和尺度相关李雅普诺夫指数(SDLE)分析,并表明它们可以极大地促进生物信号的联合混沌和多尺度分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信