Classification of Tissue Types in Histology Images Using Graph Convolutional Networks

Esra Tepe, G. Bilgin
{"title":"Classification of Tissue Types in Histology Images Using Graph Convolutional Networks","authors":"Esra Tepe, G. Bilgin","doi":"10.1109/ISDFS55398.2022.9800776","DOIUrl":null,"url":null,"abstract":"This article uses Graphic Neural Network (GNN) models on histology images to classify tissue to find phenotypes. The majority of tissue phenotyping approaches are confined to tumor and stroma classification and necessitate a significant number of histology images. In this study, Graphics Convolutional Network (GCN) is used on the CRC Tissue Phenotyping dataset, which consists of seven tissue phenotypes, namely Benign, Complex Stroma, Debris, Inflammatory, Muscle, Stroma, and Tumor. First, the input images are converted into superpixels using the SLIC algorithm and the region neighborhood graphs (RAGs), where each superpixel is a node, and the edges connect neighboring superpixels to each other are converted. Finally, graphic classification is performed on the graphic data set using GCN.","PeriodicalId":114335,"journal":{"name":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS55398.2022.9800776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article uses Graphic Neural Network (GNN) models on histology images to classify tissue to find phenotypes. The majority of tissue phenotyping approaches are confined to tumor and stroma classification and necessitate a significant number of histology images. In this study, Graphics Convolutional Network (GCN) is used on the CRC Tissue Phenotyping dataset, which consists of seven tissue phenotypes, namely Benign, Complex Stroma, Debris, Inflammatory, Muscle, Stroma, and Tumor. First, the input images are converted into superpixels using the SLIC algorithm and the region neighborhood graphs (RAGs), where each superpixel is a node, and the edges connect neighboring superpixels to each other are converted. Finally, graphic classification is performed on the graphic data set using GCN.
使用图卷积网络对组织学图像中的组织类型进行分类
本文在组织学图像上使用图形神经网络(GNN)模型对组织进行分类以发现表型。大多数组织表型方法局限于肿瘤和基质分类,需要大量的组织学图像。在本研究中,图形卷积网络(GCN)用于CRC组织表型数据集,该数据集由七种组织表型组成,即良性、复杂基质、碎片、炎症、肌肉、基质和肿瘤。首先,使用SLIC算法和区域邻域图(RAGs)将输入图像转换为超像素,其中每个超像素是一个节点,并将相邻超像素相互连接的边缘进行转换。最后,利用GCN对图形数据集进行图形分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信