Mechanism of Wall Turbulence Modulation With Premixed Hydrogen Combustion

T. Ohta, Yuta Onishi, Yasuyuki Sakai
{"title":"Mechanism of Wall Turbulence Modulation With Premixed Hydrogen Combustion","authors":"T. Ohta, Yuta Onishi, Yasuyuki Sakai","doi":"10.1115/ajkfluids2019-5075","DOIUrl":null,"url":null,"abstract":"\n In order to clarify the mechanism of modulation of turbulence structures such as quasi-streamwise vortices affected by a flame propagating toward a wall, we perform a direct numerical simulation of wall turbulence with premixed hydrogen-air combustion using a detailed chemical reaction mechanism. As a result, existing quasi-streamwise vortices in turbulence near the wall are found to be suppressed, disappearing as the flame approaches. Hence, the turbulent flow tends to become laminar. Moreover, according to the analysis of the vorticity transport equation, it is found that the suppression is due to thermal expansion of the flame rather than an increase in viscosity. From the viewpoint of chemical reactions, it is revealed that thermal expansion inside turbulence vortices is mainly caused by reactions involving H2 and H2O2.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to clarify the mechanism of modulation of turbulence structures such as quasi-streamwise vortices affected by a flame propagating toward a wall, we perform a direct numerical simulation of wall turbulence with premixed hydrogen-air combustion using a detailed chemical reaction mechanism. As a result, existing quasi-streamwise vortices in turbulence near the wall are found to be suppressed, disappearing as the flame approaches. Hence, the turbulent flow tends to become laminar. Moreover, according to the analysis of the vorticity transport equation, it is found that the suppression is due to thermal expansion of the flame rather than an increase in viscosity. From the viewpoint of chemical reactions, it is revealed that thermal expansion inside turbulence vortices is mainly caused by reactions involving H2 and H2O2.
预混氢燃烧壁面湍流调制机理
为了阐明火焰向壁面传播对湍流结构(如准流向涡)的调制机制,我们利用详细的化学反应机理对预混氢-空气燃烧的壁面湍流进行了直接数值模拟。结果发现,壁面附近湍流中存在的准流向涡被抑制,随着火焰的接近而消失。因此,湍流趋向于层流。此外,根据涡量输运方程的分析,发现抑制是由于火焰的热膨胀而不是粘度的增加。从化学反应的角度来看,湍流涡旋内部的热膨胀主要是由H2和H2O2的反应引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信