Geolocation using GAT with Multiview Learning

Zhan Wang, Chunyang Ye, Hui Zhou
{"title":"Geolocation using GAT with Multiview Learning","authors":"Zhan Wang, Chunyang Ye, Hui Zhou","doi":"10.1109/SMDS49396.2020.00017","DOIUrl":null,"url":null,"abstract":"Information in social networks plays an important role in many fields such as event detection, disaster warning, etc. However, due to the lack of geographic metadata, the information is often unusable. Therefore, the geolocation using social network data has gradually become a hot research topic. Existing methods mainly use textual contents, and thus poorly exploit the available data, especially the hidden information in the link. To address this issue, we propose two Multiview learning models, M-GAT and M-GCN, based on the Graph Attention and Graph Convolution Network to fuse both the text and link information. By extracting the text features from multiple angles to extend the feature space, our models achieve the best results on the baseline dataset. The visual display of representations collected from a hidden layer illustrates the validity of our models. Experiments on different feature combination show the effectiveness of our proposal.","PeriodicalId":385149,"journal":{"name":"2020 IEEE International Conference on Smart Data Services (SMDS)","volume":"158 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Data Services (SMDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMDS49396.2020.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information in social networks plays an important role in many fields such as event detection, disaster warning, etc. However, due to the lack of geographic metadata, the information is often unusable. Therefore, the geolocation using social network data has gradually become a hot research topic. Existing methods mainly use textual contents, and thus poorly exploit the available data, especially the hidden information in the link. To address this issue, we propose two Multiview learning models, M-GAT and M-GCN, based on the Graph Attention and Graph Convolution Network to fuse both the text and link information. By extracting the text features from multiple angles to extend the feature space, our models achieve the best results on the baseline dataset. The visual display of representations collected from a hidden layer illustrates the validity of our models. Experiments on different feature combination show the effectiveness of our proposal.
使用GAT与多视图学习的地理定位
社交网络中的信息在事件检测、灾害预警等诸多领域发挥着重要作用。然而,由于缺乏地理元数据,这些信息往往是不可用的。因此,利用社交网络数据进行地理定位逐渐成为研究的热点。现有的方法主要使用文本内容,对可用数据尤其是链接中的隐藏信息的挖掘效果较差。为了解决这一问题,我们提出了两种基于图注意和图卷积网络的多视图学习模型M-GAT和M-GCN,以融合文本和链接信息。通过从多个角度提取文本特征来扩展特征空间,我们的模型在基线数据集上获得了最好的结果。从隐藏层收集的表示的可视化显示说明了我们模型的有效性。不同特征组合的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信