memwalkd : Accelerating Key-value stores using Page Table Walkers

R. S. Anupindi, Swaroop Kotni, Arkaprava Basu
{"title":"memwalkd : Accelerating Key-value stores using Page Table Walkers","authors":"R. S. Anupindi, Swaroop Kotni, Arkaprava Basu","doi":"10.1109/HiPC56025.2022.00021","DOIUrl":null,"url":null,"abstract":"In-memory key-value stores (KVS) or caches form the backbone of many commercial and HPC applications. The basic operation of KVS revolves around storing or updating the mapping from keys to their corresponding values and looking up that mapping when requested by a client. We observe that the memory management unit (MMU) in modern processors does something similar – it looks up the mapping between virtual addresses and physical addresses stored in the per-process page table. We leverage the MMU to gain hardware acceleration for key-value lookup for free in a new key-value store design called memwalkd. We hash keys to unique virtual addresses. These addresses map to the physical addresses that hold the corresponding values. Thus, GET/SETs are performed by simply issuing loads/stores to the hash of a key. Across a wide range of workloads, memwalkd achieves 1.8× better throughput over a highly-optimized implementation of memcached called MICA [1].","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In-memory key-value stores (KVS) or caches form the backbone of many commercial and HPC applications. The basic operation of KVS revolves around storing or updating the mapping from keys to their corresponding values and looking up that mapping when requested by a client. We observe that the memory management unit (MMU) in modern processors does something similar – it looks up the mapping between virtual addresses and physical addresses stored in the per-process page table. We leverage the MMU to gain hardware acceleration for key-value lookup for free in a new key-value store design called memwalkd. We hash keys to unique virtual addresses. These addresses map to the physical addresses that hold the corresponding values. Thus, GET/SETs are performed by simply issuing loads/stores to the hash of a key. Across a wide range of workloads, memwalkd achieves 1.8× better throughput over a highly-optimized implementation of memcached called MICA [1].
memwalkd:使用页表漫步器加速键值存储
内存中的键值存储(KVS)或缓存构成了许多商业和高性能计算应用程序的支柱。KVS的基本操作围绕着存储或更新从键到对应值的映射,并在客户端请求时查找该映射。我们观察到,现代处理器中的内存管理单元(MMU)也做了类似的事情——它查找存储在每个进程页表中的虚拟地址和物理地址之间的映射。我们利用MMU在名为memwalk的新键值存储设计中免费获得键值查找的硬件加速。我们将密钥散列到唯一的虚拟地址。这些地址映射到保存相应值的物理地址。因此,通过简单地向键的散列发出加载/存储来执行GET/ set。在广泛的工作负载范围内,memwalk的吞吐量比高度优化的memcached MICA实现高出1.8倍[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信