Image retrieval using local and global properties of image regions with relevance feedback

E. R. Vimina, K. Jacob
{"title":"Image retrieval using local and global properties of image regions with relevance feedback","authors":"E. R. Vimina, K. Jacob","doi":"10.1145/2345396.2345508","DOIUrl":null,"url":null,"abstract":"This paper proposes an image retrieval system using the local and global properties of image regions. Colour features are extracted using the histograms of HSV colour space, texture features using Gray level Co-occurrence matrix (GLCM) and shape features using Edge Histogram Descriptors (EHD). The object regions are roughly identified by segmenting the image into fixed partitions and finding the white pixel density in each partition using edge thresholding and morphological dilation. To improve the retrieval efficiency, global colour and shape features are also taken into account. Euclidean distance measure is used for computing the distance between the features of the query and target image. An automatic relevance feedback algorithm is also proposed for improving the retrieval accuracy. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.","PeriodicalId":290400,"journal":{"name":"International Conference on Advances in Computing, Communications and Informatics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing, Communications and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2345396.2345508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an image retrieval system using the local and global properties of image regions. Colour features are extracted using the histograms of HSV colour space, texture features using Gray level Co-occurrence matrix (GLCM) and shape features using Edge Histogram Descriptors (EHD). The object regions are roughly identified by segmenting the image into fixed partitions and finding the white pixel density in each partition using edge thresholding and morphological dilation. To improve the retrieval efficiency, global colour and shape features are also taken into account. Euclidean distance measure is used for computing the distance between the features of the query and target image. An automatic relevance feedback algorithm is also proposed for improving the retrieval accuracy. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
利用图像区域的局部和全局属性与相关反馈进行图像检索
本文提出了一种利用图像区域的局部和全局特性的图像检索系统。使用HSV颜色空间直方图提取颜色特征,使用灰度共生矩阵(GLCM)提取纹理特征,使用边缘直方图描述符(EHD)提取形状特征。通过将图像分割成固定的分区,并利用边缘阈值分割和形态扩张来寻找每个分区中的白色像素密度,从而粗略地识别目标区域。为了提高检索效率,还考虑了全局的颜色和形状特征。欧几里得距离度量用于计算查询特征与目标图像之间的距离。为了提高检索精度,提出了一种自动关联反馈算法。初步实验结果表明,该方法的检索效果优于现有的一些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信