J. H. Metzen, M. Edgington, Y. Kassahun, F. Kirchner
{"title":"Performance evaluation of EANT in the robocup keepaway benchmark","authors":"J. H. Metzen, M. Edgington, Y. Kassahun, F. Kirchner","doi":"10.1109/ICMLA.2007.23","DOIUrl":null,"url":null,"abstract":"Several methods have been proposed for solving reinforcement learning (RL) problems. In addition to temporal difference (TD) methods, evolutionary algorithms (EA) are among the most promising approaches. The relative performance of these approaches in certain subdomains of the general RL problem remains an open question at this time. In addition to theoretical analysis, benchmarks are one of the most important tools for comparing different RL methods in certain problem domains. A recently proposed RL benchmark problem is the Keepaway benchmark, which is based on the RoboCup Soccer Simulator. This benchmark is one of the most challenging multiagent learning problems because its state-space is continuous and high dimensional, and both the sensors and actuators are noisy. In this paper we analyze the performance of the neuroevolutionary approach called evolutionary acquisition of neural topologies (EANT) in the Keepaway benchmark, and compare the results obtained using EANT with the results of other algorithms tested on the same benchmark.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Several methods have been proposed for solving reinforcement learning (RL) problems. In addition to temporal difference (TD) methods, evolutionary algorithms (EA) are among the most promising approaches. The relative performance of these approaches in certain subdomains of the general RL problem remains an open question at this time. In addition to theoretical analysis, benchmarks are one of the most important tools for comparing different RL methods in certain problem domains. A recently proposed RL benchmark problem is the Keepaway benchmark, which is based on the RoboCup Soccer Simulator. This benchmark is one of the most challenging multiagent learning problems because its state-space is continuous and high dimensional, and both the sensors and actuators are noisy. In this paper we analyze the performance of the neuroevolutionary approach called evolutionary acquisition of neural topologies (EANT) in the Keepaway benchmark, and compare the results obtained using EANT with the results of other algorithms tested on the same benchmark.