Bounded Queries and the NP Machine Hypothesis

Richard Chang, Suresh Purini
{"title":"Bounded Queries and the NP Machine Hypothesis","authors":"Richard Chang, Suresh Purini","doi":"10.1109/CCC.2007.7","DOIUrl":null,"url":null,"abstract":"The NP machine hypothesis posits the existence of an \\in \\ge 0 and a nondeterministic polynomial-time Turing machine M which accepts the language 0 but for which no deterministic Turing machine running in 2^n time can output an accepting path infinitely often. This paper shows two applications of the NP machine hypothesis in bounded query complexity. First, if the NP machine hypothesis holds, then P^SAT[1] = P^SAT[2] \\Rightarrow PH \\subseteq NP. Without assuming the NP machine hypothesis, the best known collapse of the Polynomial Hierarchy (PH) is to the class S_2^P due to a result of Fortnow, Pavan and Sengupta [9]. The second application is to bounded query function classes. If the NP machine hypothesis holds then for all constants d \\ge 0, there exists a constant k \\ge d such that for all oracles X, PF^SAT[n^k] \\not\\subset PF^X[n^d]. In particular, PF^SAT[n^d] \\varsubsetneq PF^SAT[n^k]. Without the NP machine hypothesis, there are currently no known consequences even if for all k \\ge 1, PF^SAT[n^k] \\subseteq PF^SAT[n].","PeriodicalId":175854,"journal":{"name":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2007.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The NP machine hypothesis posits the existence of an \in \ge 0 and a nondeterministic polynomial-time Turing machine M which accepts the language 0 but for which no deterministic Turing machine running in 2^n time can output an accepting path infinitely often. This paper shows two applications of the NP machine hypothesis in bounded query complexity. First, if the NP machine hypothesis holds, then P^SAT[1] = P^SAT[2] \Rightarrow PH \subseteq NP. Without assuming the NP machine hypothesis, the best known collapse of the Polynomial Hierarchy (PH) is to the class S_2^P due to a result of Fortnow, Pavan and Sengupta [9]. The second application is to bounded query function classes. If the NP machine hypothesis holds then for all constants d \ge 0, there exists a constant k \ge d such that for all oracles X, PF^SAT[n^k] \not\subset PF^X[n^d]. In particular, PF^SAT[n^d] \varsubsetneq PF^SAT[n^k]. Without the NP machine hypothesis, there are currently no known consequences even if for all k \ge 1, PF^SAT[n^k] \subseteq PF^SAT[n].
有界查询与NP机假设
NP机假设假设存在一个\in\ge 0和一个非确定性多项式时间图灵机M,该图灵机接受语言0,但在2^n时间内运行的确定性图灵机无法无限频繁地输出接受路径。本文给出了NP机假设在有界查询复杂度中的两种应用。首先,如果NP机假设成立,则P^SAT[1] = P^SAT[2] \Rightarrow PH \subseteq NP。在不假设NP机假设的情况下,由于Fortnow, Pavan和Sengupta[9]的结果,最著名的多项式层次(PH)的崩溃是到S_2^P类。第二个应用是有界查询函数类。如果NP机假设成立,那么对于所有常数d \ge 0,存在一个常数k \ge d,使得对于所有的oracle X, PF^SAT[n^k] \not\subset PF^X[n^d]。特别是PF^SAT[n^d] \varsubsetneq PF^SAT[n^k]。如果没有NP机假设,即使对于所有k \ge 1, PF^SAT[n^k] \subseteq PF^SAT[n],目前也没有已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信