How hot is piping hot?: lower energy consumption with smarter hot water delivery

Yong Sun, Md Anindya Prodhan, Erin Griffiths, K. Whitehouse
{"title":"How hot is piping hot?: lower energy consumption with smarter hot water delivery","authors":"Yong Sun, Md Anindya Prodhan, Erin Griffiths, K. Whitehouse","doi":"10.1145/2737095.2737112","DOIUrl":null,"url":null,"abstract":"In typical US homes, water heating is the largest energy consumer besides space heating and cooling, and it accounts for approximately 17% of residential energy consumption on average. In this paper, we propose and evaluate a new technique to reduce energy waste due to pipe loss: delivering lower temperature water whenever possible. We created a Smarter Water Heater (SWH) that uses data fusion techniques to infer 1) the fixture being used 2) the mixed water temperature at the fixture 3) the pipe volume for that fixture. After learning a model for each fixture, it solves a control optimization problem to decide when and at what temperature to deliver water to minimize energy use without sacrificing comfort of the user. We evaluated the SWH in three stages. First, we built a physical prototype and measured energy efficiency. We then deployed 18 sensors into a home's piping system for a 50-day in-situ study to stress test the SWH's sensing sub-system. Finally, we collected traces of hot water use from 5 different homes over 10 days each to determine how different water usage habits and piping structures affect energy savings. The results indicate that the SWH reduces total water heating energy by 8--14% with little to no effect on user comfort.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2737112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In typical US homes, water heating is the largest energy consumer besides space heating and cooling, and it accounts for approximately 17% of residential energy consumption on average. In this paper, we propose and evaluate a new technique to reduce energy waste due to pipe loss: delivering lower temperature water whenever possible. We created a Smarter Water Heater (SWH) that uses data fusion techniques to infer 1) the fixture being used 2) the mixed water temperature at the fixture 3) the pipe volume for that fixture. After learning a model for each fixture, it solves a control optimization problem to decide when and at what temperature to deliver water to minimize energy use without sacrificing comfort of the user. We evaluated the SWH in three stages. First, we built a physical prototype and measured energy efficiency. We then deployed 18 sensors into a home's piping system for a 50-day in-situ study to stress test the SWH's sensing sub-system. Finally, we collected traces of hot water use from 5 different homes over 10 days each to determine how different water usage habits and piping structures affect energy savings. The results indicate that the SWH reduces total water heating energy by 8--14% with little to no effect on user comfort.
滚烫有多热?:更智能的热水输送,降低能源消耗
在典型的美国家庭中,除了空间供暖和制冷,水供暖是最大的能源消耗者,它平均约占住宅能源消耗的17%。在本文中,我们提出并评估了一种新技术,以减少由于管道损耗造成的能源浪费:尽可能提供较低温度的水。我们创建了一个智能热水器(SWH),它使用数据融合技术来推断1)正在使用的固定装置2)固定装置上的混合水温3)该固定装置的管道体积。在学习了每个灯具的模型后,它解决了一个控制优化问题,即决定何时以及在什么温度下供水,以最大限度地减少能源消耗,同时又不牺牲用户的舒适度。我们分三个阶段对SWH进行评估。首先,我们建立了一个物理原型并测量了能源效率。然后,我们将18个传感器部署到一个家庭的管道系统中,进行为期50天的现场研究,对SWH的传感子系统进行压力测试。最后,我们收集了5个不同家庭在10天内的热水使用痕迹,以确定不同的用水习惯和管道结构如何影响节能。结果表明,SWH减少了8- 14%的总热水能量,对用户的舒适度几乎没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信