Statistical detection of faults in swarm robots under noisy conditions

F. Harrou, Belkacem Khaldi, Ying Sun, Foudil Cherif
{"title":"Statistical detection of faults in swarm robots under noisy conditions","authors":"F. Harrou, Belkacem Khaldi, Ying Sun, Foudil Cherif","doi":"10.1109/CEIT.2018.8751862","DOIUrl":null,"url":null,"abstract":"Fault detection plays an important role in supervising the operation of robotic swarm systems. If faults are not detected, they can considerably affect the performance of the robot swarm. In this paper, we present a robust fault detection mechanism against noise and uncertainties in data, by merging the multiresolution representation of data using wavelets with the sensitivity to small changes of an exponentially weighted moving average scheme. Specifically, to monitor swarm robotics systems performing a virtual viscoelastic control model for circle formation task, the proposed mechanism is applied to the uncorrelated residuals form principal component analysis model. Monitoring results using a simulation data from ARGoS simulator demonstrate that the proposed method achieves improved fault detection performances compared with the conventional approach.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fault detection plays an important role in supervising the operation of robotic swarm systems. If faults are not detected, they can considerably affect the performance of the robot swarm. In this paper, we present a robust fault detection mechanism against noise and uncertainties in data, by merging the multiresolution representation of data using wavelets with the sensitivity to small changes of an exponentially weighted moving average scheme. Specifically, to monitor swarm robotics systems performing a virtual viscoelastic control model for circle formation task, the proposed mechanism is applied to the uncorrelated residuals form principal component analysis model. Monitoring results using a simulation data from ARGoS simulator demonstrate that the proposed method achieves improved fault detection performances compared with the conventional approach.
噪声条件下群体机器人故障的统计检测
故障检测在监督机器人群系统的运行中起着重要的作用。如果没有检测到故障,它们会极大地影响机器人群的性能。在本文中,我们提出了一种鲁棒的故障检测机制,针对数据中的噪声和不确定性,通过合并数据的多分辨率表示使用小波与灵敏度指数加权移动平均方案的小变化。具体而言,为了监测群机器人系统执行虚拟粘弹性控制模型的圆形成任务,将所提出的机制应用于主成分分析模型的不相关残差。基于ARGoS模拟器仿真数据的监测结果表明,与传统方法相比,该方法具有更好的故障检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信