Research on Man-Machine Conversation System Based on GRU seq2seq Model

Wei Huang, Xiaoyu Dong, Wenqian Shang, Weiguo Lin
{"title":"Research on Man-Machine Conversation System Based on GRU seq2seq Model","authors":"Wei Huang, Xiaoyu Dong, Wenqian Shang, Weiguo Lin","doi":"10.1109/DSA.2019.00064","DOIUrl":null,"url":null,"abstract":"Intelligent robot Q & A is a new focus in the field of natural language understanding and processing. In recent years, with the gradual maturity of deep learning technology, more and more research has begun to model deep neural networks for text semantics. Deep neural networks are computational models abstracted from human brain cognitive processes, closer to humans. In this paper, we use GRU deep neural network to study the generative dialogue, and implement a seq2seq model manmachine conversation system. Experiments show that the confidence of the system can reach the range of human acceptance.","PeriodicalId":342719,"journal":{"name":"2019 6th International Conference on Dependable Systems and Their Applications (DSA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Dependable Systems and Their Applications (DSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSA.2019.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent robot Q & A is a new focus in the field of natural language understanding and processing. In recent years, with the gradual maturity of deep learning technology, more and more research has begun to model deep neural networks for text semantics. Deep neural networks are computational models abstracted from human brain cognitive processes, closer to humans. In this paper, we use GRU deep neural network to study the generative dialogue, and implement a seq2seq model manmachine conversation system. Experiments show that the confidence of the system can reach the range of human acceptance.
基于GRU seq2seq模型的人机对话系统研究
智能机器人问答是自然语言理解与处理领域的一个新热点。近年来,随着深度学习技术的逐渐成熟,越来越多的研究开始对深度神经网络进行文本语义建模。深度神经网络是从人类大脑认知过程中抽象出来的计算模型,更接近人类。本文利用GRU深度神经网络对生成式对话进行研究,实现了一个seq2seq模型的人机对话系统。实验表明,该系统的置信度可以达到人类可接受的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信