Monitoring, Prediction and Prevention of SLA Violations in Composite Services

P. Leitner, Anton Michlmayr, Florian Rosenberg, S. Dustdar
{"title":"Monitoring, Prediction and Prevention of SLA Violations in Composite Services","authors":"P. Leitner, Anton Michlmayr, Florian Rosenberg, S. Dustdar","doi":"10.1109/ICWS.2010.21","DOIUrl":null,"url":null,"abstract":"We propose the PREvent framework, which is a system that integrates event-based monitoring, prediction of SLA violations using machine learning techniques, and automated runtime prevention of those violations by triggering adaptation actions in service compositions. PREvent improves on related work in that it can be used to prevent violations ex ante, before they have negatively impacted the provider's SLAs. We explain PREvent in detail and show the impact on SLA violations based on a case study.","PeriodicalId":170573,"journal":{"name":"2010 IEEE International Conference on Web Services","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2010.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

Abstract

We propose the PREvent framework, which is a system that integrates event-based monitoring, prediction of SLA violations using machine learning techniques, and automated runtime prevention of those violations by triggering adaptation actions in service compositions. PREvent improves on related work in that it can be used to prevent violations ex ante, before they have negatively impacted the provider's SLAs. We explain PREvent in detail and show the impact on SLA violations based on a case study.
复合服务中SLA违规的监控、预测和预防
我们提出了PREvent框架,它是一个集成了基于事件的监控、使用机器学习技术预测SLA违规以及通过在服务组合中触发自适应动作来自动防止这些违规的系统。PREvent对相关工作进行了改进,因为它可以在违规行为对提供者的sla产生负面影响之前预先阻止它们。我们详细解释了PREvent,并基于一个案例研究展示了它对SLA违反的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信