Online Multi-person Tracking by Tracker Hierarchy

Jianming Zhang, Liliana Lo Presti, S. Sclaroff
{"title":"Online Multi-person Tracking by Tracker Hierarchy","authors":"Jianming Zhang, Liliana Lo Presti, S. Sclaroff","doi":"10.1109/AVSS.2012.51","DOIUrl":null,"url":null,"abstract":"Tracking-by-detection is a widely used paradigm for multi-person tracking but is affected by variations in crowd density, obstacles in the scene, varying illumination, human pose variation, scale changes, etc. We propose an improved tracking-by-detection framework for multi-person tracking where the appearance model is formulated as a template ensemble updated online given detections provided by a pedestrian detector. We employ a hierarchy of trackers to select the most effective tracking strategy and an algorithm to adapt the conditions for trackers' initialization and termination. Our formulation is online and does not require calibration information. In experiments with four pedestrian tracking benchmark datasets, our formulation attains accuracy that is comparable to, or better than, the state-of-the-art pedestrian trackers that must exploit calibration information and operate offline.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Tracking-by-detection is a widely used paradigm for multi-person tracking but is affected by variations in crowd density, obstacles in the scene, varying illumination, human pose variation, scale changes, etc. We propose an improved tracking-by-detection framework for multi-person tracking where the appearance model is formulated as a template ensemble updated online given detections provided by a pedestrian detector. We employ a hierarchy of trackers to select the most effective tracking strategy and an algorithm to adapt the conditions for trackers' initialization and termination. Our formulation is online and does not require calibration information. In experiments with four pedestrian tracking benchmark datasets, our formulation attains accuracy that is comparable to, or better than, the state-of-the-art pedestrian trackers that must exploit calibration information and operate offline.
在线多人跟踪跟踪器层次结构
检测跟踪是一种广泛使用的多人跟踪模式,但会受到人群密度、场景中的障碍物、光照、人体姿势变化、尺度变化等因素的影响。我们提出了一种用于多人跟踪的改进的检测跟踪框架,其中外观模型被表述为给定行人检测器提供的检测在线更新的模板集成。我们采用跟踪器的层次结构来选择最有效的跟踪策略,并采用一种算法来适应跟踪器初始化和终止的条件。我们的配方是在线的,不需要校准信息。在四个行人跟踪基准数据集的实验中,我们的配方达到了与必须利用校准信息并离线运行的最先进的行人跟踪器相当或更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信