On the complexity of kinodynamic planning

J. Canny, B. Donald, J. Reif, P. Xavier
{"title":"On the complexity of kinodynamic planning","authors":"J. Canny, B. Donald, J. Reif, P. Xavier","doi":"10.1109/SFCS.1988.21947","DOIUrl":null,"url":null,"abstract":"The following problem, is considered: given a robot system find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. The simplified case of a point mass under Newtonian mechanics together with velocity and acceleration bounds is considered. The point must be flown from a start to a goal, amid 2-D or 3-D polyhedral obstacles. While exact solutions to this problem are not known, the first provably good approximation algorithm is given and shown to run in polynomial time.","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 169

Abstract

The following problem, is considered: given a robot system find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. The simplified case of a point mass under Newtonian mechanics together with velocity and acceleration bounds is considered. The point must be flown from a start to a goal, amid 2-D or 3-D polyhedral obstacles. While exact solutions to this problem are not known, the first provably good approximation algorithm is given and shown to run in polynomial time.
论动力学规划的复杂性
考虑如下问题:给定一个机器人系统,在避开障碍物并尊重速度和加速度的动态约束的情况下,找到从起始位置和速度到目标位置和速度的最短时间轨迹。考虑了牛顿力学下质点的简化情况,并考虑了速度和加速度边界。在二维或三维多面体障碍中,点必须从起点飞到目标。虽然这个问题的精确解尚不清楚,但给出了第一个可证明的良好近似算法,并证明它在多项式时间内运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信