Electromagnetic Problems Modeling Using Algebraic Topological Method

Vikram Reddy Anapana, Venkata Kowshik Sivva, P. Sai, Venkatesh Gongolu, Lanka Mithin Chakravarthy
{"title":"Electromagnetic Problems Modeling Using Algebraic Topological Method","authors":"Vikram Reddy Anapana, Venkata Kowshik Sivva, P. Sai, Venkatesh Gongolu, Lanka Mithin Chakravarthy","doi":"10.11648/J.AJEA.20210902.11","DOIUrl":null,"url":null,"abstract":"We can solve electromagnetic problems using two main mathematical tools: vector calculus and differential equations. These tools command the computational electromagnetic domain. However, these tools are not always needed for the realistic modeling of electromagnetic problems. In reality, we are interested in the measurement of scalar quantities in electromagnetics, not vector quantities. Conventional electromagnetic simulation approaches are proving to be more mathematical than physical. Furthermore, the use of differential equations leads us along a different route for modeling fundamental physics. Since computers need discrete formulations, we can’t directly transform continuous differential equations into numerical algorithms. The algebraic topological method is a direct discrete and computationally ambitious technique that uses only physically measurable scalar quantities. This paper simulates a parallel plate capacitor using global variables and calculating and comparing the potentials with the analytical method. The measured results show a good agreement between the analytical and the algebraic topological methods.","PeriodicalId":430478,"journal":{"name":"American Journal of Electromagnetics and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electromagnetics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJEA.20210902.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We can solve electromagnetic problems using two main mathematical tools: vector calculus and differential equations. These tools command the computational electromagnetic domain. However, these tools are not always needed for the realistic modeling of electromagnetic problems. In reality, we are interested in the measurement of scalar quantities in electromagnetics, not vector quantities. Conventional electromagnetic simulation approaches are proving to be more mathematical than physical. Furthermore, the use of differential equations leads us along a different route for modeling fundamental physics. Since computers need discrete formulations, we can’t directly transform continuous differential equations into numerical algorithms. The algebraic topological method is a direct discrete and computationally ambitious technique that uses only physically measurable scalar quantities. This paper simulates a parallel plate capacitor using global variables and calculating and comparing the potentials with the analytical method. The measured results show a good agreement between the analytical and the algebraic topological methods.
电磁学问题的代数拓扑建模
我们可以用两种主要的数学工具来解决电磁问题:向量微积分和微分方程。这些工具控制着计算电磁领域。然而,这些工具并不总是需要的电磁问题的实际建模。实际上,我们感兴趣的是电磁学中标量的测量,而不是矢量。传统的电磁模拟方法被证明是数学多于物理的。此外,微分方程的使用使我们沿着一条不同的道路来建模基础物理。由于计算机需要离散公式,我们不能直接将连续微分方程转换为数值算法。代数拓扑方法是一种直接离散且计算量大的技术,它只使用物理上可测量的标量。本文利用全局变量对并联极板电容器进行了仿真,并采用解析法计算和比较电势。实测结果表明,解析拓扑方法与代数拓扑方法具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信