Keddah: Capturing Hadoop Network Behaviour

Jie Deng, Gareth Tyson, F. Cuadrado, S. Uhlig
{"title":"Keddah: Capturing Hadoop Network Behaviour","authors":"Jie Deng, Gareth Tyson, F. Cuadrado, S. Uhlig","doi":"10.1109/ICDCS.2017.211","DOIUrl":null,"url":null,"abstract":"As a distributed system, Hadoop heavily relies on the network to complete data processing jobs. While Hadoop traffic is perceived to be critical for job execution performance, the actual behaviour of Hadoop network traffic is still poorly understood. This lack of understanding greatly complicates research relying on Hadoop workloads. In this paper, we explore Hadoop traffic through experimentation. We analyse the generated traffic of multiple types of MapReduce jobs, with varying input sizes, and cluster configuration parameters. As a result, we present Keddah, a toolchain for capturing, modelling and reproducing Hadoop traffic, for use with network simulators. Keddah can be used to create empirical Hadoop traffic models, enabling reproducible Hadoop research in more realistic scenarios.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As a distributed system, Hadoop heavily relies on the network to complete data processing jobs. While Hadoop traffic is perceived to be critical for job execution performance, the actual behaviour of Hadoop network traffic is still poorly understood. This lack of understanding greatly complicates research relying on Hadoop workloads. In this paper, we explore Hadoop traffic through experimentation. We analyse the generated traffic of multiple types of MapReduce jobs, with varying input sizes, and cluster configuration parameters. As a result, we present Keddah, a toolchain for capturing, modelling and reproducing Hadoop traffic, for use with network simulators. Keddah can be used to create empirical Hadoop traffic models, enabling reproducible Hadoop research in more realistic scenarios.
Keddah:捕获Hadoop网络行为
作为一个分布式系统,Hadoop在很大程度上依赖于网络来完成数据处理工作。虽然Hadoop流量被认为对作业执行性能至关重要,但Hadoop网络流量的实际行为仍然知之甚少。这种理解的缺乏使依赖Hadoop工作负载的研究变得非常复杂。在本文中,我们通过实验来探索Hadoop流量。我们分析了多种类型的MapReduce作业产生的流量,这些作业具有不同的输入大小和集群配置参数。因此,我们提出了Keddah,一个用于捕获、建模和再现Hadoop流量的工具链,用于网络模拟器。Keddah可用于创建经验Hadoop流量模型,从而在更现实的场景中实现可重复的Hadoop研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信