Carlos Alberto De la Trinidad, I. A. Figueroa, José María Cabrera, G. Gonzalez
{"title":"Exploring the effects of repetitive corrugation and strengthening on alloy A5083 using X-ray diffraction techniques","authors":"Carlos Alberto De la Trinidad, I. A. Figueroa, José María Cabrera, G. Gonzalez","doi":"10.21741/97816449025615-42","DOIUrl":null,"url":null,"abstract":"Abstract. Aluminum alloys are highly versatile materials and their behavior can be improved by severe plastic deformation. X-Ray Diffraction (XRD) is a key tool for studying the microstructural changes and the evolution of the crystalline structure during this process. This combination of processing techniques helped the development of high-performance aluminum alloys for various industrial applications. The objective was to determine a heat treatment to promote a new crystallographic texture of AA5083 under a severe plastic deformation process. The determination of this thermal ratio, as well as the crystallographic characterization of the material, were studied through XRD, thermo-diffraction, Rietveld analysis, and pole figures (PF). The results showed that using a partial recrystallization heat treatment combined with the RCS process favors obtaining a characteristic recrystallization and deformation texture (cube and brass component). Furthermore, the evolution of diffraction peaks intensities at different temperatures confirm that recrystallization takes place during the process. Finally, the phases present in the A5083 alloy were determined by XRD.","PeriodicalId":242571,"journal":{"name":"Superplasticity in Advanced Materials","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superplasticity in Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/97816449025615-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Aluminum alloys are highly versatile materials and their behavior can be improved by severe plastic deformation. X-Ray Diffraction (XRD) is a key tool for studying the microstructural changes and the evolution of the crystalline structure during this process. This combination of processing techniques helped the development of high-performance aluminum alloys for various industrial applications. The objective was to determine a heat treatment to promote a new crystallographic texture of AA5083 under a severe plastic deformation process. The determination of this thermal ratio, as well as the crystallographic characterization of the material, were studied through XRD, thermo-diffraction, Rietveld analysis, and pole figures (PF). The results showed that using a partial recrystallization heat treatment combined with the RCS process favors obtaining a characteristic recrystallization and deformation texture (cube and brass component). Furthermore, the evolution of diffraction peaks intensities at different temperatures confirm that recrystallization takes place during the process. Finally, the phases present in the A5083 alloy were determined by XRD.