{"title":"Segment based co-factor detection and elimination for effective gait recognition","authors":"Abdul Matin, J. Paul, Taufique Sayeed","doi":"10.1109/ICIVPR.2017.7890887","DOIUrl":null,"url":null,"abstract":"Gait is an important physiological biometric in the area of computer vision for human authentication at a distance. In appearance-based gait recognition system, significant gait features could be affected by various cofactors such as cloths or carrying objects. Therefore, detecting co-factored segments and eliminating co-factored information without losing the features of Gait Energy Image (GEI) is one of the major concerns for appropriate gait recognition. In this paper, we proposed a method for detecting cofactor affected segments of GEI and an approach for dynamic reconstruction of co-factored GEI for more accurate gait recognition. The whole GEI is first segmented into three parts considering the area of cofactor appearance in it. Moreover, co-factored information are detected and eliminated depending on some predefined threshold values. Finally, the three segments are recombined for final classification. The CASIA gait database is used here as a training and a test data. The result shows better performance with 85.04% accuracy which is more convenient than other conventional gait recognition methods.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Gait is an important physiological biometric in the area of computer vision for human authentication at a distance. In appearance-based gait recognition system, significant gait features could be affected by various cofactors such as cloths or carrying objects. Therefore, detecting co-factored segments and eliminating co-factored information without losing the features of Gait Energy Image (GEI) is one of the major concerns for appropriate gait recognition. In this paper, we proposed a method for detecting cofactor affected segments of GEI and an approach for dynamic reconstruction of co-factored GEI for more accurate gait recognition. The whole GEI is first segmented into three parts considering the area of cofactor appearance in it. Moreover, co-factored information are detected and eliminated depending on some predefined threshold values. Finally, the three segments are recombined for final classification. The CASIA gait database is used here as a training and a test data. The result shows better performance with 85.04% accuracy which is more convenient than other conventional gait recognition methods.