Convolutional Neural Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs

Venkata Salini Priyamvada Davuluru, Barath Narayanan Narayanan, E. Balster
{"title":"Convolutional Neural Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs","authors":"Venkata Salini Priyamvada Davuluru, Barath Narayanan Narayanan, E. Balster","doi":"10.1109/NAECON46414.2019.9058025","DOIUrl":null,"url":null,"abstract":"Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.
卷积神经网络作为分类工具和特征提取器用于区分恶意程序
恶意软件程序分类是反恶意软件行业关注的一个研究领域。在这项研究中,我们提出了一个系统,该系统将恶意软件程序可视化为图像,并使用卷积神经网络(cnn)来区分它们。我们使用迁移学习方法研究了几种成熟的基于CNN的算法(如AlexNet、ResNet和VGG16)的性能。我们还提出了一种计算效率高的基于cnn的恶意程序分类体系结构。此外,我们通过使用支持向量机(SVM)和k近邻(kNN)进行分类,研究了这些cnn作为特征提取器的性能。我们还提出了进一步提高性能的融合方法。我们利用微软恶意软件分类挑战(BIG 2015)提供的公开可用数据库进行本研究。对于包含9个不同类别的2174个测试样本,我们的总体性能为99.4%,从而设置了一个新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信