A Hybrid Morphological Active Contour for Natural Images

Victoria L. Fox, M. Milanova, S. Al-Ali
{"title":"A Hybrid Morphological Active Contour for Natural Images","authors":"Victoria L. Fox, M. Milanova, S. Al-Ali","doi":"10.2139/ssrn.3775362","DOIUrl":null,"url":null,"abstract":"Morphological active contours for image segmentation have become popular due to their low computational complexity coupled with their accurate approximation of the partial differential equations involved in the energy minimization of the segmentation process. In this paper, a morphological active contour which mimics the energy minimization of the popular Chan-Vese Active Contour without Edges is coupled with a morphological edge-driven segmentation term to accurately segment natural images. By using morphological approximations of the energy minimization steps, the algorithm has a low computational complexity. Additionally, the coupling of the edge-based and region-based segmentation techniques allows the proposed method to be robust and accurate. We will demonstrate the accuracy and robustness of the algorithm using images from the Weizmann Segmentation Evaluation Database and report on the segmentation results using the Sorensen-Dice similarity coefficient.","PeriodicalId":433297,"journal":{"name":"EngRN: Signal Processing (Topic)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Signal Processing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3775362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Morphological active contours for image segmentation have become popular due to their low computational complexity coupled with their accurate approximation of the partial differential equations involved in the energy minimization of the segmentation process. In this paper, a morphological active contour which mimics the energy minimization of the popular Chan-Vese Active Contour without Edges is coupled with a morphological edge-driven segmentation term to accurately segment natural images. By using morphological approximations of the energy minimization steps, the algorithm has a low computational complexity. Additionally, the coupling of the edge-based and region-based segmentation techniques allows the proposed method to be robust and accurate. We will demonstrate the accuracy and robustness of the algorithm using images from the Weizmann Segmentation Evaluation Database and report on the segmentation results using the Sorensen-Dice similarity coefficient.
自然图像的混合形态活动轮廓
形态学活动轮廓由于其较低的计算复杂度以及对分割过程中能量最小化所涉及的偏微分方程的精确逼近而成为图像分割的热门方法。本文将一种形态活动轮廓与一种形态边缘驱动的分割项相结合,模仿了目前流行的无边缘Chan-Vese活动轮廓的能量最小化方法,实现了对自然图像的精确分割。该算法采用能量最小化步骤的形态近似,具有较低的计算复杂度。此外,基于边缘和基于区域的分割技术的耦合使得该方法具有鲁棒性和准确性。我们将使用来自Weizmann分割评估数据库的图像来演示该算法的准确性和鲁棒性,并使用Sorensen-Dice相似系数报告分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信