Provenance Tracking with Bit Vectors

Siddharta S. Gadang, B. Panda, J. Hoag
{"title":"Provenance Tracking with Bit Vectors","authors":"Siddharta S. Gadang, B. Panda, J. Hoag","doi":"10.1109/IAS.2008.47","DOIUrl":null,"url":null,"abstract":"Data provenance (information about the origin of data items and the transformations that they have gone through) can be a useful security tool, particularly for forensic investigation. Provenance information can also be used to enforce information assurance concepts like integrity and authenticity. The current techniques for finding data source and lineage information are annotations and query inversion. Annotations lack scalability and require additional space for storing and querying provenance information, while query inversion incurs more time and processing overhead. In this paper, we offer fast and scalable models for computing source information, each of which are based on associating bit vectors with data sources.","PeriodicalId":103328,"journal":{"name":"2008 The Fourth International Conference on Information Assurance and Security","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Fourth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2008.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data provenance (information about the origin of data items and the transformations that they have gone through) can be a useful security tool, particularly for forensic investigation. Provenance information can also be used to enforce information assurance concepts like integrity and authenticity. The current techniques for finding data source and lineage information are annotations and query inversion. Annotations lack scalability and require additional space for storing and querying provenance information, while query inversion incurs more time and processing overhead. In this paper, we offer fast and scalable models for computing source information, each of which are based on associating bit vectors with data sources.
用位矢量跟踪来源
数据来源(关于数据项的来源及其所经历的转换的信息)可能是一种有用的安全工具,特别是用于取证调查。来源信息还可以用于加强信息保证概念,如完整性和真实性。目前用于查找数据源和沿袭信息的技术是注释和查询反转。注释缺乏可伸缩性,并且需要额外的空间来存储和查询来源信息,而查询反转会导致更多的时间和处理开销。在本文中,我们提供了计算源信息的快速和可扩展的模型,每个模型都基于将位向量与数据源相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信