Auxiliary Maximum Likelihood Estimation for Noisy Point Cloud Registration

Cole Campton, Xiaobai Sun
{"title":"Auxiliary Maximum Likelihood Estimation for Noisy Point Cloud Registration","authors":"Cole Campton, Xiaobai Sun","doi":"10.1109/HPEC.2019.8916224","DOIUrl":null,"url":null,"abstract":"We establish first a theoretical foundation for the use of Gromov-Hausdorff (GH) distance for point set registration with homeomorphic deformation maps perturbed by Gaussian noise. We then present a probabilistic, deformable registration framework. At the core of the framework is a highly efficient iterative algorithm with guaranteed convergence to a local minimum of the GH-based objective function. The framework has two other key components – a multi-scale stochastic shape descriptor and a data compression scheme. We also present an experimental comparison between our method and two existing influential methods on non-rigid motion between digital anthropomorphic phantoms extracted from physical data of multiple individuals.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish first a theoretical foundation for the use of Gromov-Hausdorff (GH) distance for point set registration with homeomorphic deformation maps perturbed by Gaussian noise. We then present a probabilistic, deformable registration framework. At the core of the framework is a highly efficient iterative algorithm with guaranteed convergence to a local minimum of the GH-based objective function. The framework has two other key components – a multi-scale stochastic shape descriptor and a data compression scheme. We also present an experimental comparison between our method and two existing influential methods on non-rigid motion between digital anthropomorphic phantoms extracted from physical data of multiple individuals.
噪声点云配准的辅助最大似然估计
本文首先为利用Gromov-Hausdorff (GH)距离对高斯噪声干扰下的同胚变形映射进行点集配准奠定了理论基础。然后,我们提出了一个概率的、可变形的配准框架。该框架的核心是一种高效的迭代算法,保证收敛到基于gh的目标函数的局部最小值。该框架还有另外两个关键组件——一个多尺度随机形状描述符和一个数据压缩方案。我们还将我们的方法与现有的两种有影响的方法进行了实验比较,以研究从多个个体的物理数据中提取的数字拟人幻影之间的非刚性运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信