{"title":"Cavitation Number As a Function of Disk Cavitator Radius: A Numerical Analysis of Natural Supercavitation","authors":"R. Prichard, W. Strasser, T. Eldredge","doi":"10.1115/IMECE2019-12492","DOIUrl":null,"url":null,"abstract":"\n Due to the greater viscosity and density of water compared to air, the maximum speed of underwater travel is severely limited compared to other methods of transportation. However, a technology called supercavitation — which uses a disk-shaped cavitator to envelop a vehicle in a bubble of steam — promises to greatly decrease skin friction drag. While a large cavitator enables the occurrence of supercavitation at low velocities, it adds substantial drag at higher speeds. Based on CFD results, we propose a new relationship between drag coefficient and disk cavitator radius, and we predict the optimum cavitator radius for a particular torpedo design.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"300 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2019-12492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the greater viscosity and density of water compared to air, the maximum speed of underwater travel is severely limited compared to other methods of transportation. However, a technology called supercavitation — which uses a disk-shaped cavitator to envelop a vehicle in a bubble of steam — promises to greatly decrease skin friction drag. While a large cavitator enables the occurrence of supercavitation at low velocities, it adds substantial drag at higher speeds. Based on CFD results, we propose a new relationship between drag coefficient and disk cavitator radius, and we predict the optimum cavitator radius for a particular torpedo design.