IP traffic modeling: most relevant time-scale and local Poisson property

T. Takine, K. Okazaki, H. Masuyama
{"title":"IP traffic modeling: most relevant time-scale and local Poisson property","authors":"T. Takine, K. Okazaki, H. Masuyama","doi":"10.1109/ICKS.2004.17","DOIUrl":null,"url":null,"abstract":"We consider IP traffic modeling to evaluate the packet loss probability. It is well-known that IP traffic shows long-range dependence or self-similarity in a long time-scale, whereas it looks random in a short time-scale. Thus we consider the branching Poisson process that has such a multiple time-scale feature. We focus on a queue fed by branching Poisson input and briefly discuss the local Poisson property in a short time-scale. Further we construct an equivalent MMPP input in such a sense that the packet loss probability can be predicted by evaluating the queue fed by the MMPP input.","PeriodicalId":185973,"journal":{"name":"International Conference on Informatics Research for Development of Knowledge Society Infrastructure, 2004. ICKS 2004.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Informatics Research for Development of Knowledge Society Infrastructure, 2004. ICKS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKS.2004.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider IP traffic modeling to evaluate the packet loss probability. It is well-known that IP traffic shows long-range dependence or self-similarity in a long time-scale, whereas it looks random in a short time-scale. Thus we consider the branching Poisson process that has such a multiple time-scale feature. We focus on a queue fed by branching Poisson input and briefly discuss the local Poisson property in a short time-scale. Further we construct an equivalent MMPP input in such a sense that the packet loss probability can be predicted by evaluating the queue fed by the MMPP input.
IP流量建模:最相关的时间尺度和局部泊松性质
我们考虑IP流量建模来评估丢包概率。众所周知,IP流量在长时间尺度上表现为长期依赖或自相似,而在短时间尺度上表现为随机。因此,我们考虑具有这种多时间尺度特征的分支泊松过程。重点研究了分支泊松输入馈送的队列,并简要讨论了短时间尺度下的局部泊松性质。进一步,我们构造了一个等价的MMPP输入,在这种意义上,丢包概率可以通过评估由MMPP输入提供的队列来预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信