Weights and structure determination of pruning-while-growing type for 3-input power-activation feed-forward neuronet

Yunong Zhang, Wenchao Lao, Yonghua Yin, Lin Xiao, Jinhao Chen
{"title":"Weights and structure determination of pruning-while-growing type for 3-input power-activation feed-forward neuronet","authors":"Yunong Zhang, Wenchao Lao, Yonghua Yin, Lin Xiao, Jinhao Chen","doi":"10.1109/ICAL.2012.6308199","DOIUrl":null,"url":null,"abstract":"In this paper, a new type of 3-input power-activation feed-forward neuronet (3IPFN) is constructed and investigated. For the 3IPFN, a novel weights-and-structure-determination (WASD) algorithm is presented to solve data approximation and prediction problems. With the weights-direct-determination (WDD) method exploited, the WASD algorithm can obtain the optimal weights of the 3IPFN between hidden layer and output layer directly. Moreover, the WASD algorithm determines the optimal structure (i.e., the optimal number of hidden-layer neurons) of the 3IPFN adaptively by growing and pruning hidden-layer neurons during the training process. Numerical results of illustrative examples highlight the efficacy of the 3IPFN equipped with the so-called WASD algorithm.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new type of 3-input power-activation feed-forward neuronet (3IPFN) is constructed and investigated. For the 3IPFN, a novel weights-and-structure-determination (WASD) algorithm is presented to solve data approximation and prediction problems. With the weights-direct-determination (WDD) method exploited, the WASD algorithm can obtain the optimal weights of the 3IPFN between hidden layer and output layer directly. Moreover, the WASD algorithm determines the optimal structure (i.e., the optimal number of hidden-layer neurons) of the 3IPFN adaptively by growing and pruning hidden-layer neurons during the training process. Numerical results of illustrative examples highlight the efficacy of the 3IPFN equipped with the so-called WASD algorithm.
三输入功率激活前馈神经元随生长修剪型的权值和结构确定
本文构造并研究了一种新型的三输入功率激活前馈神经元(3IPFN)。对于3IPFN,提出了一种新的权重和结构确定(WASD)算法来解决数据逼近和预测问题。WASD算法利用权值直接确定(weight -direct-determination, WDD)方法,可以直接获得隐藏层与输出层之间的3IPFN的最优权值。此外,WASD算法在训练过程中通过对隐藏层神经元的生长和修剪,自适应地确定3IPFN的最优结构(即隐藏层神经元的最优数量)。算例的数值结果突出了采用WASD算法的3IPFN的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信