Crystal structures classifier for an evolutionary algorithm structure predictor

Mario Valle, A. Oganov
{"title":"Crystal structures classifier for an evolutionary algorithm structure predictor","authors":"Mario Valle, A. Oganov","doi":"10.1109/VAST.2008.4677351","DOIUrl":null,"url":null,"abstract":"USPEX is a crystal structure predictor based on an evolutionary algorithm. Every USPEX run produces hundreds or thousands of crystal structures, some of which may be identical. To ease the extraction of unique and potentially interesting structures we applied usual high-dimensional classification concepts to the unusual field of crystallography. We experimented with various crystal structure descriptors, distinct distance measures and tried different clustering methods to identify groups of similar structures. These methods are already applied in combinatorial chemistry to organic molecules for a different goal and in somewhat different forms, but are not widely used for crystal structures classification. We adopted a visual design and validation method in the development of a library (CrystalFp) and an end-user application to select and validate method choices, to gain userspsila acceptance and to tap into their domain expertise. The use of the classifier has already accelerated the analysis of USPEX output by at least one order of magnitude, promoting some new crystallographic insight and discovery. Furthermore the visual display of key algorithm indicators has led to diverse, unexpected discoveries that will improve the USPEX algorithms.","PeriodicalId":213107,"journal":{"name":"2008 IEEE Symposium on Visual Analytics Science and Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2008.4677351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

USPEX is a crystal structure predictor based on an evolutionary algorithm. Every USPEX run produces hundreds or thousands of crystal structures, some of which may be identical. To ease the extraction of unique and potentially interesting structures we applied usual high-dimensional classification concepts to the unusual field of crystallography. We experimented with various crystal structure descriptors, distinct distance measures and tried different clustering methods to identify groups of similar structures. These methods are already applied in combinatorial chemistry to organic molecules for a different goal and in somewhat different forms, but are not widely used for crystal structures classification. We adopted a visual design and validation method in the development of a library (CrystalFp) and an end-user application to select and validate method choices, to gain userspsila acceptance and to tap into their domain expertise. The use of the classifier has already accelerated the analysis of USPEX output by at least one order of magnitude, promoting some new crystallographic insight and discovery. Furthermore the visual display of key algorithm indicators has led to diverse, unexpected discoveries that will improve the USPEX algorithms.
晶体结构分类器的一种结构预测进化算法
USPEX是一种基于进化算法的晶体结构预测器。每次USPEX运行都会产生数百或数千个晶体结构,其中一些可能是相同的。为了方便提取独特和潜在有趣的结构,我们将通常的高维分类概念应用于晶体学这个不寻常的领域。我们尝试了不同的晶体结构描述符、不同的距离度量和不同的聚类方法来识别相似结构的基团。这些方法已经在组合化学中以不同的目的和不同的形式应用于有机分子,但尚未广泛用于晶体结构分类。我们在库(CrystalFp)和最终用户应用程序的开发中采用了一种可视化设计和验证方法来选择和验证方法的选择,以获得用户的认可,并利用他们的领域专业知识。分类器的使用已经将USPEX输出的分析速度提高了至少一个数量级,促进了一些新的晶体学见解和发现。此外,关键算法指标的可视化显示导致了各种意想不到的发现,这些发现将改进USPEX算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信