Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts

Michal Etzion, A. Rappoport
{"title":"Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts","authors":"Michal Etzion, A. Rappoport","doi":"10.1145/304012.304029","DOIUrl":null,"url":null,"abstract":"The paper presents an algorithm to construct the Voronoi diagram of a 3-D Iinear polyhedron. The robustness and simplicity of the algorithm are due to the separation between the computation of the symbolic and geometric parts of the diagram. The symbolic part of the diagram, the Voronoi graph, is computed by a space subdivision algorithm. The computation of the Voronoi graph utilizes only relatively simple 2-D geometric computations. Given the Voronoi graph, and a geometric approximation given by the space subdivision, the construction of the geometric part is simple and reliable. An important advantage of the algorithm is that it enables local and partial computation of the Voronoi diagram. In a previous paper we have given a detailed proof of correctness of the computation of the Voronoi graph. This paper complements the previous one by detailing the algorithm and its implementation. In addition, this paper describes the computation of the geometric part of the diagram. CR","PeriodicalId":286112,"journal":{"name":"International Conference on Smart Media and Applications","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/304012.304029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

The paper presents an algorithm to construct the Voronoi diagram of a 3-D Iinear polyhedron. The robustness and simplicity of the algorithm are due to the separation between the computation of the symbolic and geometric parts of the diagram. The symbolic part of the diagram, the Voronoi graph, is computed by a space subdivision algorithm. The computation of the Voronoi graph utilizes only relatively simple 2-D geometric computations. Given the Voronoi graph, and a geometric approximation given by the space subdivision, the construction of the geometric part is simple and reliable. An important advantage of the algorithm is that it enables local and partial computation of the Voronoi diagram. In a previous paper we have given a detailed proof of correctness of the computation of the Voronoi graph. This paper complements the previous one by detailing the algorithm and its implementation. In addition, this paper describes the computation of the geometric part of the diagram. CR
计算三维多面体的Voronoi图,分别计算其符号部分和几何部分
提出了一种构造三维线性多面体Voronoi图的算法。该算法的鲁棒性和简单性是由于将图的符号部分和几何部分的计算分离开来。图的符号部分,Voronoi图,是通过空间细分算法计算的。Voronoi图的计算只使用相对简单的二维几何计算。在给定Voronoi图和空间细分给出的几何近似的情况下,几何部分的构造简单可靠。该算法的一个重要优点是能够对Voronoi图进行局部和部分计算。在以前的一篇文章中,我们已经给出了Voronoi图计算正确性的详细证明。本文通过详细介绍算法及其实现,对前一篇文章进行了补充。此外,本文还描述了图的几何部分的计算。CR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信