Adaptive Sleep/Wake Classification Based on Cardiorespiratory Signals for Wearable Devices

W. Karlen, C. Mattiussi, D. Floreano
{"title":"Adaptive Sleep/Wake Classification Based on Cardiorespiratory Signals for Wearable Devices","authors":"W. Karlen, C. Mattiussi, D. Floreano","doi":"10.1109/BIOCAS.2007.4463344","DOIUrl":null,"url":null,"abstract":"In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.
基于可穿戴设备心肺信号的自适应睡眠/觉醒分类
在本文中,我们描述了一种基于可穿戴应用的心肺信号对人类在线睡眠/觉醒状态进行分类的方法。该方法被设计为嵌入便携式微控制器设备中,以应对由此产生的严格功率限制。该方法采用快速傅里叶变换作为主要特征提取方法,采用自适应前馈人工神经网络作为分类器。结果表明,当对单个用户进行训练时,该网络对来自同一用户的未见数据的平均正确分类率为95.4%。在多用户条件下,该方法的准确率较低(89.4%)。这仍然可以与活动描记法相媲美,但我们的方法对尾流周期的分类要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信