Full-System Simulation of Mobile CPU/GPU Platforms

Kuba Kaszyk, Harry Wagstaff, T. Spink, Björn Franke, M. O’Boyle, Bruno Bodin, Henrik Uhrenholt
{"title":"Full-System Simulation of Mobile CPU/GPU Platforms","authors":"Kuba Kaszyk, Harry Wagstaff, T. Spink, Björn Franke, M. O’Boyle, Bruno Bodin, Henrik Uhrenholt","doi":"10.1109/ISPASS.2019.00015","DOIUrl":null,"url":null,"abstract":"Graphics Processing Units (GPUs) critically rely on a complex system software stack comprising kernel- and user-space drivers and Just-in-time (JIT) compilers. Yet, existing GPU simulators typically abstract away details of the software stack and GPU instruction set. Partly, this is because GPU vendors rarely release sufficient information about their latest GPU products. However, this is also due to the lack of an integrated CPU/GPU simulation framework, which is complete and powerful enough to drive the complex GPU software environment. This has led to a situation where research on GPU architectures and compilers is largely based on outdated or greatly simplified architectures and software stacks, undermining the validity of the generated results. In this paper we develop a full-system system simulation environment for a mobile platform, which enables users to run a complete and unmodified software stack for a state-of-the-art mobile Arm CPU and Mali-G71 GPU powered device. We validate our simulator against a hardware implementation and Arm's stand-alone GPU simulator, achieving 100% architectural accuracy across all available toolchains. We demonstrate the capability of our GPU simulation framework by optimizing an advanced Computer Vision application using simulated statistics unavailable with other simulation approaches or physical GPU implementations. We demonstrate that performance optimizations for desktop GPUs trigger bottlenecks on mobile GPUs, and show the importance of efficient memory use.","PeriodicalId":137786,"journal":{"name":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Graphics Processing Units (GPUs) critically rely on a complex system software stack comprising kernel- and user-space drivers and Just-in-time (JIT) compilers. Yet, existing GPU simulators typically abstract away details of the software stack and GPU instruction set. Partly, this is because GPU vendors rarely release sufficient information about their latest GPU products. However, this is also due to the lack of an integrated CPU/GPU simulation framework, which is complete and powerful enough to drive the complex GPU software environment. This has led to a situation where research on GPU architectures and compilers is largely based on outdated or greatly simplified architectures and software stacks, undermining the validity of the generated results. In this paper we develop a full-system system simulation environment for a mobile platform, which enables users to run a complete and unmodified software stack for a state-of-the-art mobile Arm CPU and Mali-G71 GPU powered device. We validate our simulator against a hardware implementation and Arm's stand-alone GPU simulator, achieving 100% architectural accuracy across all available toolchains. We demonstrate the capability of our GPU simulation framework by optimizing an advanced Computer Vision application using simulated statistics unavailable with other simulation approaches or physical GPU implementations. We demonstrate that performance optimizations for desktop GPUs trigger bottlenecks on mobile GPUs, and show the importance of efficient memory use.
移动CPU/GPU平台的全系统仿真
图形处理单元(gpu)严重依赖于复杂的系统软件堆栈,其中包括内核和用户空间驱动程序以及即时(JIT)编译器。然而,现有的GPU模拟器通常抽象了软件堆栈和GPU指令集的细节。部分原因是GPU供应商很少发布有关其最新GPU产品的足够信息。然而,这也是由于缺乏一个集成的CPU/GPU仿真框架,它是完整的和强大的,足以驱动复杂的GPU软件环境。这导致对GPU架构和编译器的研究主要基于过时或大大简化的架构和软件堆栈,从而破坏了生成结果的有效性。在本文中,我们开发了一个移动平台的全系统系统仿真环境,使用户能够为最先进的移动Arm CPU和Mali-G71 GPU供电设备运行完整且未修改的软件堆栈。我们针对硬件实现和Arm的独立GPU模拟器验证了我们的模拟器,在所有可用的工具链中实现了100%的架构准确性。我们通过使用其他仿真方法或物理GPU实现不可用的模拟统计数据优化高级计算机视觉应用程序来展示我们的GPU仿真框架的功能。我们证明了桌面gpu的性能优化会触发移动gpu的瓶颈,并展示了高效内存使用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信