NDBIris with Better Unlinkability

Dongdong Zhao, Xiaoyan Zhou, Jianwen Xiang, Wenjian Luo
{"title":"NDBIris with Better Unlinkability","authors":"Dongdong Zhao, Xiaoyan Zhou, Jianwen Xiang, Wenjian Luo","doi":"10.1109/SSCI47803.2020.9308596","DOIUrl":null,"url":null,"abstract":"Iris recognition is one of the mainstream biometric recognition methods. Protecting iris data to prevent personal privacy leakage is significant to the popularity of iris recognition. Negative database is a new type of privacy protection technique. We proposed a promising method (called NDBIris) of iris template protection based on negative databases in previous work. However, its unlinkability is vulnerable under typical parameter settings (e.g. p1=0.8$,p_{2}$=0.14) and it does not protect the privacy of real-time iris data from users for recognition. This paper proposes an improved version called NDBIris-II to achieve better unlinkability and protect the real-time iris data. Specifically, a noninvertible transform using local sorting is performed before converting iris data into negative databases. Moreover, a method for estimating the similarity between iris data from negative databases is proposed to support effective iris recognition. Finally, an iris template in the form of negative database is generated for each iris data, and it is stored and used during iris recognition instead of raw iris data for privacy protection. Experimental results on iris database CASIA-IrisV3-Interval demonstrate that the proposed method could maintain recognition performance while achieving better unlinkability and protecting real-time iris data.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Iris recognition is one of the mainstream biometric recognition methods. Protecting iris data to prevent personal privacy leakage is significant to the popularity of iris recognition. Negative database is a new type of privacy protection technique. We proposed a promising method (called NDBIris) of iris template protection based on negative databases in previous work. However, its unlinkability is vulnerable under typical parameter settings (e.g. p1=0.8$,p_{2}$=0.14) and it does not protect the privacy of real-time iris data from users for recognition. This paper proposes an improved version called NDBIris-II to achieve better unlinkability and protect the real-time iris data. Specifically, a noninvertible transform using local sorting is performed before converting iris data into negative databases. Moreover, a method for estimating the similarity between iris data from negative databases is proposed to support effective iris recognition. Finally, an iris template in the form of negative database is generated for each iris data, and it is stored and used during iris recognition instead of raw iris data for privacy protection. Experimental results on iris database CASIA-IrisV3-Interval demonstrate that the proposed method could maintain recognition performance while achieving better unlinkability and protecting real-time iris data.
NDBIris具有更好的不可链接性
虹膜识别是主流的生物特征识别方法之一。保护虹膜数据,防止个人隐私泄露,对虹膜识别的普及具有重要意义。负面数据库是一种新型的隐私保护技术。我们在之前的工作中提出了一种很有前途的基于阴性数据库的虹膜模板保护方法(NDBIris)。然而,在典型的参数设置(如p1=0.8$,p_{2}$=0.14)下,它的不可链接性是脆弱的,并且它不能保护实时虹膜数据的隐私不被用户识别。本文提出了一种改进版本NDBIris-II,以达到更好的不链接性和保护实时虹膜数据。具体来说,在将虹膜数据转换为负数据库之前,执行使用局部排序的不可逆转换。此外,为了有效识别虹膜,提出了一种基于阴性数据库的虹膜数据相似度估计方法。最后,对每个虹膜数据生成一个负数据库形式的虹膜模板,在虹膜识别过程中代替原始虹膜数据进行存储和使用,以保护隐私。在虹膜数据库CASIA-IrisV3-Interval上的实验结果表明,该方法在保持识别性能的同时,具有较好的不链接性,保护了虹膜数据的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信