A generalized labeled multi-Bernoulli tracker for time lapse cell migration

D. Kim, B. Vo, Aurelne Thian, Yu Suk Choi
{"title":"A generalized labeled multi-Bernoulli tracker for time lapse cell migration","authors":"D. Kim, B. Vo, Aurelne Thian, Yu Suk Choi","doi":"10.1109/ICCAIS.2017.8217576","DOIUrl":null,"url":null,"abstract":"Tracking is a means to accomplish the more fundamental task of extracting relevant information about cell behavior from time-lapse microscopy data. Hence, characterizing uncertainty or confidence in the information inferred from the data is as important as the tracking of the cells. In this paper, we show that in addition to being a principled Bayesian multi-object tracking approach, the Random Finite Set (RFS) framework is capable of providing consistent characterization of uncertainty for the information inferred from the data. In particular, we use an efficient implementation of the Generalized Labeled Multi-Bernoulli (GLMB) filter to track a large number of cells in a cell migration experiment and demonstrate how to characterize uncertainty on variables inferred from the data such as cell counts, survival rate, birth rate, mean position, mean velocity using standard constructs from RFS theory.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Tracking is a means to accomplish the more fundamental task of extracting relevant information about cell behavior from time-lapse microscopy data. Hence, characterizing uncertainty or confidence in the information inferred from the data is as important as the tracking of the cells. In this paper, we show that in addition to being a principled Bayesian multi-object tracking approach, the Random Finite Set (RFS) framework is capable of providing consistent characterization of uncertainty for the information inferred from the data. In particular, we use an efficient implementation of the Generalized Labeled Multi-Bernoulli (GLMB) filter to track a large number of cells in a cell migration experiment and demonstrate how to characterize uncertainty on variables inferred from the data such as cell counts, survival rate, birth rate, mean position, mean velocity using standard constructs from RFS theory.
一种广义标记多伯努利时间移细胞跟踪器
跟踪是完成从延时显微镜数据中提取细胞行为相关信息的更基本任务的一种手段。因此,描述从数据推断出的信息的不确定性或可信度与跟踪细胞一样重要。在本文中,我们证明了随机有限集(RFS)框架除了是一种原则贝叶斯多目标跟踪方法外,还能够为从数据中推断的信息提供一致的不确定性表征。特别是,我们使用了广义标记多伯努利(GLMB)滤波器的有效实现来跟踪细胞迁移实验中的大量细胞,并演示了如何使用RFS理论的标准构造来表征从数据推断的变量的不确定性,如细胞计数、存活率、出生率、平均位置、平均速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信