Vehicle inertial parameter identification using Extended and unscented Kalman Filters

Sanghyun Hong, Tory Smith, F. Borrelli, J. Hedrick
{"title":"Vehicle inertial parameter identification using Extended and unscented Kalman Filters","authors":"Sanghyun Hong, Tory Smith, F. Borrelli, J. Hedrick","doi":"10.1109/ITSC.2013.6728432","DOIUrl":null,"url":null,"abstract":"Contemporary safety systems, such as obstacle avoidance and lane-keeping assistance, require good approximations of vehicle inertial properties, such as sprung mass and yaw moment of inertia, which can vary significantly based on the number of passengers, seating arrangement, and luggage. This paper demonstrates the implementation of two model-based parameter estimation algorithms, the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), which are capable of working with a four degree of freedom, nonlinear vehicle model. While the EKF requires analytical linearization of the vehicle model at each step, the UKF approximates the parameter distribution with discrete sigma points and propagates them through the original nonlinear system. Simulation of a double lane change in CarSim illustrates the superior performance of the UKF for vehicle inertial parameter identification.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Contemporary safety systems, such as obstacle avoidance and lane-keeping assistance, require good approximations of vehicle inertial properties, such as sprung mass and yaw moment of inertia, which can vary significantly based on the number of passengers, seating arrangement, and luggage. This paper demonstrates the implementation of two model-based parameter estimation algorithms, the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), which are capable of working with a four degree of freedom, nonlinear vehicle model. While the EKF requires analytical linearization of the vehicle model at each step, the UKF approximates the parameter distribution with discrete sigma points and propagates them through the original nonlinear system. Simulation of a double lane change in CarSim illustrates the superior performance of the UKF for vehicle inertial parameter identification.
基于扩展和无气味卡尔曼滤波器的车辆惯性参数辨识
现代安全系统,如避障和车道保持辅助,需要很好地近似车辆惯性特性,如簧载质量和偏航惯性矩,这可能会因乘客数量、座位安排和行李而有很大变化。本文演示了扩展卡尔曼滤波器(EKF)和Unscented卡尔曼滤波器(UKF)两种基于模型的参数估计算法的实现,这两种算法能够处理四自由度非线性车辆模型。EKF要求在每一步对车辆模型进行解析线性化,而UKF用离散的sigma点逼近参数分布,并将其传播到原始非线性系统。在CarSim中进行的双变道仿真验证了UKF在车辆惯性参数识别方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信