Evolutionary approach to data mining

Y. Singh, N.A.R. Araby
{"title":"Evolutionary approach to data mining","authors":"Y. Singh, N.A.R. Araby","doi":"10.1109/ICIT.2000.854265","DOIUrl":null,"url":null,"abstract":"Data mining is the process of extracting previously unknown information from an exceedingly large data set with minimum human interference. The useful information may be expressed as relationships between propositions or variables or data elements, which can be used to predict future patterns or behaviour. The present paper investigates evolutionary computing techniques for data mining tasks in the form of discovery of association rules and presents a brief review of evolutionary computation techniques for machine learning systems. The evolution of association rules as subset selection in the best form is comprehensible and modular knowledge for understanding. The experimental results and examples for binary data set are provided to demonstrate the effectiveness of evolutionary computation for rule discovery tasks in form of association rules.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"29 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data mining is the process of extracting previously unknown information from an exceedingly large data set with minimum human interference. The useful information may be expressed as relationships between propositions or variables or data elements, which can be used to predict future patterns or behaviour. The present paper investigates evolutionary computing techniques for data mining tasks in the form of discovery of association rules and presents a brief review of evolutionary computation techniques for machine learning systems. The evolution of association rules as subset selection in the best form is comprehensible and modular knowledge for understanding. The experimental results and examples for binary data set are provided to demonstrate the effectiveness of evolutionary computation for rule discovery tasks in form of association rules.
数据挖掘的进化方法
数据挖掘是在最少人为干扰的情况下,从一个非常大的数据集中提取以前未知信息的过程。有用的信息可以表示为命题、变量或数据元素之间的关系,可用于预测未来的模式或行为。本文以关联规则发现的形式研究了数据挖掘任务的进化计算技术,并简要回顾了机器学习系统的进化计算技术。关联规则演化为子集选择的最佳形式,是可理解的模块化知识。给出了二值数据集的实验结果和实例,验证了进化计算在关联规则形式的规则发现任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信