Deeply-Supervised Multi-Dose Prior Learning For Low-Dose Pet Imaging

Yu Gong, Hongming Shan, Yueyang Teng, Hairong Zheng, Ge Wang, Shanshan Wang
{"title":"Deeply-Supervised Multi-Dose Prior Learning For Low-Dose Pet Imaging","authors":"Yu Gong, Hongming Shan, Yueyang Teng, Hairong Zheng, Ge Wang, Shanshan Wang","doi":"10.1109/ISBIWorkshops50223.2020.9153450","DOIUrl":null,"url":null,"abstract":"Positron emission tomography (PET) is an advanced imaging modality for tumor staging and therapy response. However, PET radiation exposure has raised public concerns and it is in need to develop low-dose PET imaging techniques. This paper proposes to explore prior information inherited in different levels of low-dose PET images with deep learning and then utilize them to estimate high-quality PET images from the image with the lowest dose. The proposed method is evaluated on the in vivo dataset with encouraging performance.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"63 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Positron emission tomography (PET) is an advanced imaging modality for tumor staging and therapy response. However, PET radiation exposure has raised public concerns and it is in need to develop low-dose PET imaging techniques. This paper proposes to explore prior information inherited in different levels of low-dose PET images with deep learning and then utilize them to estimate high-quality PET images from the image with the lowest dose. The proposed method is evaluated on the in vivo dataset with encouraging performance.
用于低剂量Pet成像的深度监督多剂量先验学习
正电子发射断层扫描(PET)是一种先进的肿瘤分期和治疗反应的成像方式。然而,PET辐射暴露引起了公众的关注,需要开发低剂量PET成像技术。本文提出利用深度学习方法探索低剂量PET图像中不同级别的遗传先验信息,并利用这些先验信息从最低剂量的图像中估计出高质量的PET图像。在活体数据集上对该方法进行了评估,取得了令人鼓舞的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信