Instance Aware Document Image Segmentation using Label Pyramid Networks and Deep Watershed Transformation

Xiaohui Li, Fei Yin, Tao Xue, Long Liu, J. Ogier, Cheng-Lin Liu
{"title":"Instance Aware Document Image Segmentation using Label Pyramid Networks and Deep Watershed Transformation","authors":"Xiaohui Li, Fei Yin, Tao Xue, Long Liu, J. Ogier, Cheng-Lin Liu","doi":"10.1109/ICDAR.2019.00088","DOIUrl":null,"url":null,"abstract":"Segmentation of complex document images remains a challenge due to the large variability of layout and image degradation. In this paper, we propose a method to segment complex document images based on Label Pyramid Network (LPN) and Deep Watershed Transform (DWT). The method can segment document images into instance aware regions including text lines, text regions, figures, tables, etc. The backbone of LPN can be any type of Fully Convolutional Networks (FCN), and in training, label map pyramids on training images are provided to exploit the hierarchical boundary information of regions efficiently through multi-task learning. The label map pyramid is transformed from region class label map by distance transformation and multi-level thresholding. In segmentation, the outputs of multiple tasks of LPN are summed into one single probability map, on which watershed transformation is carried out to segment the document image into instance aware regions. In experiments on four public databases, our method is demonstrated effective and superior, yielding state of the art performance for text line segmentation, baseline detection and region segmentation.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Segmentation of complex document images remains a challenge due to the large variability of layout and image degradation. In this paper, we propose a method to segment complex document images based on Label Pyramid Network (LPN) and Deep Watershed Transform (DWT). The method can segment document images into instance aware regions including text lines, text regions, figures, tables, etc. The backbone of LPN can be any type of Fully Convolutional Networks (FCN), and in training, label map pyramids on training images are provided to exploit the hierarchical boundary information of regions efficiently through multi-task learning. The label map pyramid is transformed from region class label map by distance transformation and multi-level thresholding. In segmentation, the outputs of multiple tasks of LPN are summed into one single probability map, on which watershed transformation is carried out to segment the document image into instance aware regions. In experiments on four public databases, our method is demonstrated effective and superior, yielding state of the art performance for text line segmentation, baseline detection and region segmentation.
基于标签金字塔网络和深度分水岭变换的实例感知文档图像分割
复杂文档图像的分割仍然是一个挑战,由于大变异性的布局和图像退化。提出了一种基于标签金字塔网络(LPN)和深度分水岭变换(DWT)的复杂文档图像分割方法。该方法可以将文档图像分割为实例感知区域,包括文本行、文本区域、图形、表格等。LPN的主干可以是任意类型的全卷积网络(FCN),在训练中,在训练图像上提供标签映射金字塔,通过多任务学习有效地利用区域的分层边界信息。通过距离变换和多级阈值分割,将区域类标签映射转化为标签映射金字塔。在分割中,将LPN的多个任务的输出求和成一个概率图,在此概率图上进行分水岭变换,将文档图像分割成实例感知区域。在四个公共数据库的实验中,我们的方法被证明是有效和优越的,在文本行分割、基线检测和区域分割方面产生了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信