Spectral unmixing of three-algae mixtures using hyperspectral images

M. Mehrubeoglu, P. Zimba, L. McLauchlan, Ming Yang Teng
{"title":"Spectral unmixing of three-algae mixtures using hyperspectral images","authors":"M. Mehrubeoglu, P. Zimba, L. McLauchlan, Ming Yang Teng","doi":"10.1109/SAS.2013.6493565","DOIUrl":null,"url":null,"abstract":"A hyperspectral imaging system has been used to acquire hyperspectral data representing various combinations of three pure algal mixtures in liquid media. Geometric and linear spectral unmixing methods have been applied to identify the ratiometric combinations of the algae in the mixtures. For the geometric method, two local spectral slopes have been identified as spectral features. Average feature values for each class of algae are used as vertices of a triangle, and then compared to the test features to predict algal ratios in the test mixture. The results are compared to those from classic linear spectral unmixing. In the two independent data sets prepared, the introduced geometric method produced more favorable results than the classical spectral unmixing method.","PeriodicalId":309610,"journal":{"name":"2013 IEEE Sensors Applications Symposium Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Sensors Applications Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2013.6493565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A hyperspectral imaging system has been used to acquire hyperspectral data representing various combinations of three pure algal mixtures in liquid media. Geometric and linear spectral unmixing methods have been applied to identify the ratiometric combinations of the algae in the mixtures. For the geometric method, two local spectral slopes have been identified as spectral features. Average feature values for each class of algae are used as vertices of a triangle, and then compared to the test features to predict algal ratios in the test mixture. The results are compared to those from classic linear spectral unmixing. In the two independent data sets prepared, the introduced geometric method produced more favorable results than the classical spectral unmixing method.
利用高光谱图像对三藻混合物进行光谱分解
高光谱成像系统已被用来获取高光谱数据,代表不同组合的三种纯藻类混合物在液体介质。几何和线性光谱分离方法已被应用于确定混合中藻类的比例组合。对于几何方法,确定了两个局部光谱斜率作为光谱特征。每一类藻类的平均特征值被用作三角形的顶点,然后与测试特征进行比较,以预测测试混合物中的藻类比例。并与经典线性光谱解混结果进行了比较。在制备的两个独立数据集上,所引入的几何解调方法比经典的光谱解调方法取得了更好的解调效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信