{"title":"Influence of Higher-order Modes in Coaxial Waveguide on Measurements of Material Parameters","authors":"D. Petrov, K. Rozanov, M. Koledintseva","doi":"10.1109/EMCSI.2018.8495305","DOIUrl":null,"url":null,"abstract":"The use of a coaxial air-filled line as a test fixture for measuring complex permittivity and permeability often shows odd resonance-like behavior of material parameters as functions of frequency. This effect is typically either ascribed to the half-wavelength resonance at the sample length, or erroneously misinterpreted as intrinsic resonance behavior of the material. However, as is shown in this paper, such behavior can be attributed to excitation of the higher-order modes on the surface of the sample resulting in resonance absorption of electromagnetic energy in the test fixture. Herein, analytical, numerical, and experimental results show that there can actually be a significant impact of higher-order modes in a coaxial line on the extracted constitutive material parameters of samples.","PeriodicalId":120342,"journal":{"name":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI.2018.8495305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The use of a coaxial air-filled line as a test fixture for measuring complex permittivity and permeability often shows odd resonance-like behavior of material parameters as functions of frequency. This effect is typically either ascribed to the half-wavelength resonance at the sample length, or erroneously misinterpreted as intrinsic resonance behavior of the material. However, as is shown in this paper, such behavior can be attributed to excitation of the higher-order modes on the surface of the sample resulting in resonance absorption of electromagnetic energy in the test fixture. Herein, analytical, numerical, and experimental results show that there can actually be a significant impact of higher-order modes in a coaxial line on the extracted constitutive material parameters of samples.