A simple optimal list ranking algorithm

A. Ranade
{"title":"A simple optimal list ranking algorithm","authors":"A. Ranade","doi":"10.1109/HIPC.1998.737971","DOIUrl":null,"url":null,"abstract":"We consider the problem of ranking an N element list on a P processor EREW PRAM. Recent work on this problem has shown the importance of grain size. While several optimal O(N/P+log P) time list ranking algorithms are known, Reid-Miller and Blelloch (1994) recently showed that these do not lead to good implementations in practice, because of the fine-grained nature of these algorithms. In Reid-Miller and Blelloch's experiments the best performance was obtained by an O(N/P+log/sup 2/ P) time coarse grained randomized algorithm devised by them. We build upon their idea and present a coarse-grained randomized algorithm that runs in time O(N/P+log P), and is thus also optimal. Our algorithm simplifies some of the ideas from [6, 7]-these simplifications might be of interest to implementers.","PeriodicalId":175528,"journal":{"name":"Proceedings. Fifth International Conference on High Performance Computing (Cat. No. 98EX238)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fifth International Conference on High Performance Computing (Cat. No. 98EX238)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIPC.1998.737971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider the problem of ranking an N element list on a P processor EREW PRAM. Recent work on this problem has shown the importance of grain size. While several optimal O(N/P+log P) time list ranking algorithms are known, Reid-Miller and Blelloch (1994) recently showed that these do not lead to good implementations in practice, because of the fine-grained nature of these algorithms. In Reid-Miller and Blelloch's experiments the best performance was obtained by an O(N/P+log/sup 2/ P) time coarse grained randomized algorithm devised by them. We build upon their idea and present a coarse-grained randomized algorithm that runs in time O(N/P+log P), and is thus also optimal. Our algorithm simplifies some of the ideas from [6, 7]-these simplifications might be of interest to implementers.
一个简单的最优列表排序算法
研究了P处理器EREW PRAM上N元素列表的排序问题。最近对这个问题的研究表明了晶粒尺寸的重要性。虽然已知几种最优的O(N/P+log P)时间列表排序算法,但Reid-Miller和Blelloch(1994)最近表明,由于这些算法的细粒度性质,这些算法在实践中并没有得到很好的实现。在Reid-Miller和Blelloch的实验中,他们设计的O(N/P+log/sup 2/ P)时间粗粒度随机化算法获得了最好的性能。我们以他们的想法为基础,提出了一个运行时间为O(N/P+log P)的粗粒度随机算法,因此也是最优的。我们的算法简化了[6,7]中的一些想法——实现者可能会对这些简化感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信