Statistical detection of information hiding based on adjacent pixels difference

R. Cogranne, Cathel Zitzmann, F. Retraint, I. Nikiforov, Philippe Cornu, L. Fillatre
{"title":"Statistical detection of information hiding based on adjacent pixels difference","authors":"R. Cogranne, Cathel Zitzmann, F. Retraint, I. Nikiforov, Philippe Cornu, L. Fillatre","doi":"10.5281/ZENODO.42812","DOIUrl":null,"url":null,"abstract":"This paper presents a novel methodology for statistical detection of Least Significant Bits (LSB) matching steganography. It proposes to exploit a statistical model of natural images adjacent pixels difference. In this paper, the detection problem is first addressed in a theoretical context when cover image parameters are known. The most powerful likelihood ratio test (LRT) is designed and its statistical performances are analytically expressed. Then, for a practical case of unknown image analysis, an estimation of distribution parameters is proposed to designed a test whose performance are also analytically established. Numerical results on a large image database shows the relevance of proposed methodology.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel methodology for statistical detection of Least Significant Bits (LSB) matching steganography. It proposes to exploit a statistical model of natural images adjacent pixels difference. In this paper, the detection problem is first addressed in a theoretical context when cover image parameters are known. The most powerful likelihood ratio test (LRT) is designed and its statistical performances are analytically expressed. Then, for a practical case of unknown image analysis, an estimation of distribution parameters is proposed to designed a test whose performance are also analytically established. Numerical results on a large image database shows the relevance of proposed methodology.
基于相邻像素差的信息隐藏统计检测
本文提出了一种新的LSB匹配隐写统计检测方法。提出了利用自然图像相邻像素差的统计模型。在本文中,首先在理论背景下解决了当覆盖图像参数已知时的检测问题。设计了最强大的似然比检验(LRT),并对其统计性能进行了解析表示。然后,针对未知图像分析的实际情况,提出了一种分布参数估计方法,设计了一种测试方法,其性能也得到了解析确定。在大型图像数据库上的数值结果表明了所提出方法的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信